Home
Class 12
MATHS
Let A A=[{:(0,1),(0,0):}] , show that (a...

Let A `A=[{:(0,1),(0,0):}]` , show that `(aI+bA)^(n)=a^(n)I+na^(n-1)bA`, where I is the identity matrix of order 2 and `n in N`.

Answer

Step by step text solution for Let A A=[{:(0,1),(0,0):}] , show that (aI+bA)^(n)=a^(n)I+na^(n-1)bA, where I is the identity matrix of order 2 and n in N. by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    KUMAR PRAKASHAN|Exercise PRACTICE WORK |55 Videos
  • MATRICES

    KUMAR PRAKASHAN|Exercise TEXTBOOK BASED MCQS|43 Videos
  • MATRICES

    KUMAR PRAKASHAN|Exercise EXERCISE -3.4|18 Videos
  • LINEAR PROGRAMMING

    KUMAR PRAKASHAN|Exercise PRACTICE WORK|25 Videos
  • PROBABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 13 (Section - D (Answer the following questions))|2 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(0,1),(0,0):}]andI=[{:(1,0),(0,1):}] then prove that (aI+bA)^(3)=a^(3)I+3a^(2)bA .

If A=[{:(3,-4),(1,-1):}] , then prove that A^(n)=[{:(1+2n,-4n),(n,1-2n):}] where n is any positive integer .

Knowledge Check

  • If A=[{:(i,0),(0,i):}], n inN then A^(4n)= ...... (where I is imaginary complex number and i^(2)=-1)

    A
    `[{:(i,0),(0,i):}]`
    B
    `[{:(0,0),(0,0):}]`
    C
    `[{:(1,0),(0,1):}]`
    D
    `[{:(0,-i),(i,0):}]`
  • Similar Questions

    Explore conceptually related problems

    A=[{:(a,b),(0,1):}],ane1 then prove that A^(n)=[{:(a^(n),(b(a^(n)-1))/(a-1)),(0," "1):}], n inN .

    if A =[(3,-4),( 1,-1)] then prove that A^n = [ ( 1+2n, -4n),( n,1-2n)] where n is any positive integer .

    if A =[(3,-4),( 1,-1)] then prove that A^n = [ ( 1+2n, -4n),( n,1-2n)] where n is any positive integer .

    If f(x)=(a-x^(n))^(1/n) , where a gt 0 and n in N , then fof (x) is equal to

    If (a^(m))^(n)=a^(m^(n)) , then express m in the terms of n is (agt0, ane0, mgt1, ngt1)

    If i=sqrt(-1), the number of values of i^(-n) for a different n inI is

    The value of sum_(n=0)^(50)i^(2n+n)! (where i=sqrt(-1)) is