Home
Class 12
MATHS
The matrix P=[{:(0,0,4),(0,4,0),(4,0,0):...

The matrix `P=[{:(0,0,4),(0,4,0),(4,0,0):}]` is a ………..

A

square matrix

B

diagonal matrix

C

unit matrix

D

None

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    KUMAR PRAKASHAN|Exercise Solutions of NCERT Exemplar Problems (Fillers)|14 Videos
  • MATRICES

    KUMAR PRAKASHAN|Exercise Solutions of NCERT Exemplar Problems (True /False)|20 Videos
  • MATRICES

    KUMAR PRAKASHAN|Exercise Solutions of NCERT Exemplar Problems (Long Answer Type Questions)|4 Videos
  • LINEAR PROGRAMMING

    KUMAR PRAKASHAN|Exercise PRACTICE WORK|25 Videos
  • PROBABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 13 (Section - D (Answer the following questions))|2 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(a,0,0),(0,a,0),(0,0,a):}] then |adjA| = …….

find the adjoint of the matrix A=[(1,2,3),(0,5,0),(2,4,3)]

Knowledge Check

  • The matrix A=[{:(1,0,0),(0,2,0),(0,0,4):}] is a .......

    A
    identity matrix
    B
    symmetric matrix
    C
    skew symmetric matrix
    D
    None of these
  • If x,y,z are nonzero real numbers, then the inverse of matrix A=[{:(x,0,0),(0,y,0),(0,0,z):}] is ………

    A
    `[{:(x^(-1),0,0),(0,y^(-1),0),(0,0,z^(-1)):}]`
    B
    `xyz[{:(x^(-1),0,0),(0,y^(-1),0),(0,0,z^(-1)):}]`
    C
    `1/(xyz)[{:(x,0,0),(0,1,0),(0,0,1):}]`
    D
    `1/(xyz)[{:(1,0,0),(0,1,0),(0,0,1):}]`
  • The matrix A=[{:(0,-5,8),(5,0,12),(-8,-12,0):}] is a .....

    A
    diagonal matrix
    B
    symmetric matrix
    C
    skew symmetric matrix
    D
    Scalar matrix
  • Similar Questions

    Explore conceptually related problems

    Show that the matrix A=[(0, 1,-1),(-1,0,1),(1,-1,0)] is a skew symmetric matrix.

    If P=[{:(x,0,0),(0,y,0),(0,0,z):}]andQ=[{:(a,0,0),(0,b,0),(0,0,c):}] , prove that PQ=[{:(xa,0,0),(0,yb,0),(0,0,zc):}]=QP .

    If A=[{:(2,3,-4),(5,1,0),(3,-2,5):}]andI=[{:(1,0,0),(0,1,0),(0,0,1):}] then show that AI=IA=A.

    Evaluate the deternminant Delta=|{:(1,2,4),(-1,3,0),(4,1,0):}|

    Matrix [{:(0,5,-7),(-5,0,11),(7,-11,0):}] is a ..... matrix.