Home
Class 12
MATHS
For matrix A=[{:(1,1,1),(1,2,-3),(2,-1,3...

For matrix `A=[{:(1,1,1),(1,2,-3),(2,-1,3):}]` . Prove that , `A^(3)-6A^(2)+5A+11I=0`. Hence find `A^(-1)` using it .

Answer

Step by step text solution for For matrix A=[{:(1,1,1),(1,2,-3),(2,-1,3):}] . Prove that , A^(3)-6A^(2)+5A+11I=0. Hence find A^(-1) using it . by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    KUMAR PRAKASHAN|Exercise Practice Paper - 3 ( Section -D)|1 Videos
  • LINEAR PROGRAMMING

    KUMAR PRAKASHAN|Exercise PRACTICE WORK|25 Videos
  • PROBABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 13 (Section - D (Answer the following questions))|2 Videos

Similar Questions

Explore conceptually related problems

For the matrix A=[{:(1,1,1),(1,2,-3),(2,-1,3):}] Show that A^3-6A^2+5A+11I=O . Hence find A^(-1)

If A=[{:(1,0,2),(0,2,1),(2,0,3):}] then , prove that A^(3)-6A^(2)+7A+2I=O .

If A=[{:(1,2,1),(2,1,3),(1,1,0):}] then prove that A^3-2A^2-7A-4I_3=0 . Hence find A^(-1)

If A=[{:(2,-1,1),(-1,2,-1),(1,-1,2):}] Verify the result A^3-6A^2+9A-4I=O and hence find A^(-1)

For the matrix A=[{:(1,2,2),(2,1,2),(2,2,1):}] . Show that A^2-4A-5I=0 Hence find A^(-1)

For the matrix A=[{:(2,3),(1,2):}] , show that A^2-4A+I_2=0 . Hence, find A^(-1)

Find A^(-1)" if "A=[{:(0,1,1),(1,0,1),(1,1,0):}] and show that A^(-1)=(A^2-3I)/2

If A=[{:(3,1),(-1,2):}] show that A^2-5A+7I=O . Hence find A^(-1)

Find A^(2)-5A+6I , if A=[{:(2,0,1),(2,1,3),(1,-1,0):}] .

Show that A=[{:(5,3),(-1,-2):}] satisfies the equation A^(2)=3A-7I=0 and hence find A^(-1) .