Home
Class 12
MATHS
Let vec(a)=a(1)hat(i)+a(2)hat(j)+a(3)hat...

Let `vec(a)=a_(1)hat(i)+a_(2)hat(j)+a_(3)hat(k),vec(b)=b_(1)hat(i)+b_(2)hat(j)+b_(3)hat(k)andvec(c)=c_(1)hat(i)+c_(2)hat(j)+c_(3)hat(k)` be three non-zero vectors such that `vec(c)` is a unit vector perpendicular to both `vec(a)andvec(b).` If the angle between `vec(a)andvec(b)" is "(pi)/(6),` then
`{:""|(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))|"":}^(2)" is equal to"`

A

0

B

1

C

`(1)/(4)(a_(1)^(2)+a_(2)^(2)+a_(3)^(2))(b_(1)^(2)+b_(2)^(2)+b_(3)^(2))`

D

`(3)/(4)(a_(1)^(2)+a_(2)^(2)+a_(3)^(2))(b_(1)^(2)+b_(2)^(2)+b_(3)^(2))(c_(1)^(2)+c_(2)^(2)+c_(3)^(2))`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE previous Years Questions (Single Option Correct Type) (1 mark)|9 Videos
  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE WORKOUT (Single Option Correct Type) (2 Mark)|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 2 : Single Option Correct Type (2 Mark))|3 Videos

Similar Questions

Explore conceptually related problems

Let vec a = a_1 hat i + a_2 hat j+ a_3 hat k;vec b = b_1 hat i+ b_2 hat j+ b_3 hat k ; vec c= c_1hat i + c_2 hat j+ c_3 hat k be three non-zero vectors such that vec c is a unit vector perpendicular to both vec a & vec b. If the angle between vec a and vec b is pi/6 , then |(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|^2=

Let vec a=a_1 hat i+a_2 hat j+a_3 hat k , vec b=b_1 hat i+b_2 hat j+b_3 hat ka n d vec c=c_1 hat i+c_2 hat j+c_3 hat k be three non-zero vectors such that vec c is a unit vector perpendicular to both vec aa n d vec b . If the angle between aa n db is pi/6, then prove that |a_1a_2a_3b_1b_2b_3c_1c_2c_3|=1/4(a1 2+a2 2+a3 2)(b1 2+b2 2+b3 2)

Knowledge Check

  • Let overset(to)(a) =a_(1) hat(i) + a_(2) hat(j) + a_(3) hat(k) , overset(to)(a) = b_(1) hat(i) +b_(2) hat(j) +b_(3) hat(k) " and " overset(to)(a) = c_(1) hat(i) +c_(2) hat(j) + c_(3) hat(k) be three non- zero vectors such that overset(to)(c ) is a unit vectors perpendicular to both the vectors overset(to)(c ) and overset(to)(b) . If the angle between overset(to)(a) " and " overset(to)(n) is (pi)/(6) then |{:(a_(1),,a_(2),,a_(3)),(b_(1),,b_(2),,b_(3)),(c_(1),,c_(2),,c_(3)):}| is equal to

    A
    0
    B
    1
    C
    `(1)/(4) (a_(1)^(2) +a_(2)^(2) +a_(3)^(2))(b_(1)^(2)+b_(1)^(2) +b_(3)^(2))`
    D
    `(3)/(4) (a_(1)^(2)+a_(2)^(2))(b_(1)^(2)+b_(2)^(2)+a_(3)^(2))(c_(1)^(2)+c_(2)^(2)+c_(3)^(2))`
  • If vec(a)=2hat(i)+2 hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c)=3hat(i)+hat(j) are three vectors such that vec(a)+t vec(b) is perpendicular to vec(c) , then what is t equal to ?

    A
    8
    B
    6
    C
    4
    D
    2
  • If vec(a) = 2hat(i) + 2hat(j) + 3hat(k), vec(b)= - hat(i) + 2hat(j) + 3 and vec(c ) = 3hat(i) + hat(j) are three vectors such that vec(a) + t vec(b) is perpendicular to c. then what is t equal to?

    A
    8
    B
    6
    C
    4
    D
    2
  • Similar Questions

    Explore conceptually related problems

    If vec(a)=2hat(i)+hat(j)+3hat(k),vec(b)=-hat(i)+2hat(j)+hat(k) , and vec(c)=-3hat(i)+hat(j)+2hat(k) , find [hat(a)hat(b)hat(c)] .

    Find vec(a).(vec(b)xx vec(c )) if : vec(a)=2hat(i)+hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c )=3hat(i)+hat(j)+2hat(k) .

    If vec(A) = a_(x)hat(i) + a_(y)hat(j) + a_(z)hat(k) and vec(B) = b_(x)hat(i) + b_(y)hat(j)+b_(z)hat(k) . Then the component of vec(B) + vec(A) along z-axis is :

    Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

    Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) and vec(b) then x equals