Home
Class 11
PHYSICS
Integrate the following functions with r...

Integrate the following functions with respect to `t`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of integrating the given functions with respect to \( t \), we will go through each function step by step. ### Problem 1: Integrate \( 3t^2 - 2t \) 1. **Separate the terms**: \[ \int (3t^2 - 2t) \, dt = \int 3t^2 \, dt - \int 2t \, dt \] 2. **Integrate each term**: - For \( \int 3t^2 \, dt \): \[ = 3 \cdot \frac{t^{2+1}}{2+1} = 3 \cdot \frac{t^3}{3} = t^3 \] - For \( \int 2t \, dt \): \[ = 2 \cdot \frac{t^{1+1}}{1+1} = 2 \cdot \frac{t^2}{2} = t^2 \] 3. **Combine the results**: \[ \int (3t^2 - 2t) \, dt = t^3 - t^2 + C \] ### Problem 2: Integrate \( 4 \cos t + t^2 \) 1. **Separate the terms**: \[ \int (4 \cos t + t^2) \, dt = \int 4 \cos t \, dt + \int t^2 \, dt \] 2. **Integrate each term**: - For \( \int 4 \cos t \, dt \): \[ = 4 \sin t \] - For \( \int t^2 \, dt \): \[ = \frac{t^{2+1}}{2+1} = \frac{t^3}{3} \] 3. **Combine the results**: \[ \int (4 \cos t + t^2) \, dt = 4 \sin t + \frac{t^3}{3} + C \] ### Problem 3: Integrate \( (2t - 4)^{-4} \) 1. **Substitution**: Let \( x = 2t - 4 \). Then, \( dx = 2 \, dt \) or \( dt = \frac{dx}{2} \). 2. **Rewrite the integral**: \[ \int (2t - 4)^{-4} \, dt = \int x^{-4} \cdot \frac{dx}{2} = \frac{1}{2} \int x^{-4} \, dx \] 3. **Integrate**: \[ = \frac{1}{2} \cdot \frac{x^{-4+1}}{-4+1} = \frac{1}{2} \cdot \frac{x^{-3}}{-3} = -\frac{1}{6} x^{-3} \] 4. **Substitute back**: \[ = -\frac{1}{6} (2t - 4)^{-3} + C \] ### Problem 4: Integrate \( \frac{1}{6t - 1} \) 1. **Substitution**: Let \( x = 6t - 1 \). Then, \( dx = 6 \, dt \) or \( dt = \frac{dx}{6} \). 2. **Rewrite the integral**: \[ \int \frac{1}{6t - 1} \, dt = \int \frac{1}{x} \cdot \frac{dx}{6} = \frac{1}{6} \int \frac{1}{x} \, dx \] 3. **Integrate**: \[ = \frac{1}{6} \ln |x| + C \] 4. **Substitute back**: \[ = \frac{1}{6} \ln |6t - 1| + C \] ### Final Answers: 1. \( \int (3t^2 - 2t) \, dt = t^3 - t^2 + C \) 2. \( \int (4 \cos t + t^2) \, dt = 4 \sin t + \frac{t^3}{3} + C \) 3. \( \int (2t - 4)^{-4} \, dt = -\frac{1}{6} (2t - 4)^{-3} + C \) 4. \( \int \frac{1}{6t - 1} \, dt = \frac{1}{6} \ln |6t - 1| + C \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

Integrate the following functions 10 x

Integrate the following functions 10^(x) +e^(2x)

Integrate the following functions w.r.t x sin^(2)x cos^(3)x

Integrate the following functions w.r.t x 1/(1 - sin x)

Integrate the following functions w.r.t x x(x+1)(x+2)

Integrate the following functions w.r.t x (1+ cos x)/(x+sinx) dx

Integrate the following functions int_(theta_(1))^(theta_(2)) (d theta)/( theta -theta_(0))

Integrate the following functions w.r.t x (x^(4)-5x^(3)+3x)/(x^(2))

Integrate the following functions int_(0)^(pi//2) " cos x dx"

Integrate the following functions int_(0)^(r ) (2x-x^(3)) dx