Home
Class 11
PHYSICS
Find magnitude and direction cosines of ...

Find magnitude and direction cosines of the vector, `A= (3hati - 4hatj+5hatk).`

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude and direction cosines of the vector \( \mathbf{A} = 3\hat{i} - 4\hat{j} + 5\hat{k} \), we will follow these steps: ### Step 1: Calculate the Magnitude of the Vector The magnitude \( |\mathbf{A}| \) of the vector \( \mathbf{A} \) is given by the formula: \[ |\mathbf{A}| = \sqrt{(A_x)^2 + (A_y)^2 + (A_z)^2} \] Where \( A_x, A_y, A_z \) are the components of the vector along the \( \hat{i}, \hat{j}, \hat{k} \) directions respectively. For our vector \( \mathbf{A} = 3\hat{i} - 4\hat{j} + 5\hat{k} \): - \( A_x = 3 \) - \( A_y = -4 \) - \( A_z = 5 \) Now substituting these values into the formula: \[ |\mathbf{A}| = \sqrt{(3)^2 + (-4)^2 + (5)^2} \] Calculating the squares: \[ |\mathbf{A}| = \sqrt{9 + 16 + 25} \] Now summing these values: \[ |\mathbf{A}| = \sqrt{50} \] This can be simplified to: \[ |\mathbf{A}| = 5\sqrt{2} \] ### Step 2: Calculate the Direction Cosines The direction cosines \( \cos \alpha, \cos \beta, \cos \gamma \) are given by the formulas: \[ \cos \alpha = \frac{A_x}{|\mathbf{A}|}, \quad \cos \beta = \frac{A_y}{|\mathbf{A}|}, \quad \cos \gamma = \frac{A_z}{|\mathbf{A}|} \] Substituting the values we have: 1. **For \( \cos \alpha \)**: \[ \cos \alpha = \frac{3}{5\sqrt{2}} \] 2. **For \( \cos \beta \)**: \[ \cos \beta = \frac{-4}{5\sqrt{2}} \] 3. **For \( \cos \gamma \)**: \[ \cos \gamma = \frac{5}{5\sqrt{2}} = \frac{1}{\sqrt{2}} \] ### Final Results - The magnitude of the vector \( \mathbf{A} \) is \( 5\sqrt{2} \). - The direction cosines are: - \( \cos \alpha = \frac{3}{5\sqrt{2}} \) - \( \cos \beta = \frac{-4}{5\sqrt{2}} \) - \( \cos \gamma = \frac{1}{\sqrt{2}} \) ---

To find the magnitude and direction cosines of the vector \( \mathbf{A} = 3\hat{i} - 4\hat{j} + 5\hat{k} \), we will follow these steps: ### Step 1: Calculate the Magnitude of the Vector The magnitude \( |\mathbf{A}| \) of the vector \( \mathbf{A} \) is given by the formula: \[ |\mathbf{A}| = \sqrt{(A_x)^2 + (A_y)^2 + (A_z)^2} ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTORS

    DC PANDEY ENGLISH|Exercise Exercise 5.3|4 Videos
  • VECTORS

    DC PANDEY ENGLISH|Exercise Single Correct|39 Videos
  • VECTORS

    DC PANDEY ENGLISH|Exercise Exercise 5.1|5 Videos
  • UNITS, DIMENSIONS & ERROR ANALYSIS

    DC PANDEY ENGLISH|Exercise Medical entrances gallery|32 Videos
  • WAVE MOTION

    DC PANDEY ENGLISH|Exercise Integer Type Question|11 Videos

Similar Questions

Explore conceptually related problems

The direction cosines of the vector 3hati-4hatj+5hatk are

The direction cosines of the vector 3hati-4hatj+5hatk are

Find the direction cosines of the vector hati+2hatj+3hatk .

Find the direction cosines of the vector: hati+2hatj+6hatk

Find the direction ratios and the direction cosines of the vector vecr= hati + hatj+hatk .

Find the direction cosines of the vector 2hati+2hatj-hatk

Obtain the magnitude and direction cosines of vector (A-B), if A=2hati+3hatj+hatk, B=2hati+2hatj+3hatk

If vecP=3hati+4hatj+12hatk then find magnitude and the direction cosines of the vecP .

If vecP=3hati+4hatj+12hatk then find magnitude and the direction cosines of the vecP .

(i) Find the unit vector in the direction of veca+vecb if veca=2hati-hatj+2hatk , and vecb=-hati+hatj-hatk (ii) Find the direction ratios and direction cosines of the vector veca=5hati+3hatj-4hatk .