Home
Class 11
PHYSICS
If a =2hati+3hatj+4hatk and b =4hati+3ha...

If `a =2hati+3hatj+4hatk and b =4hati+3hatj +2hatk` ,find the angel between a and b.

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \( \mathbf{a} \) and \( \mathbf{b} \), we can use the formula for the cosine of the angle \( \theta \) between two vectors: \[ \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} \] **Step 1: Calculate the dot product \( \mathbf{a} \cdot \mathbf{b} \)** Given: \[ \mathbf{a} = 2\hat{i} + 3\hat{j} + 4\hat{k} \] \[ \mathbf{b} = 4\hat{i} + 3\hat{j} + 2\hat{k} \] The dot product \( \mathbf{a} \cdot \mathbf{b} \) is calculated as follows: \[ \mathbf{a} \cdot \mathbf{b} = (2)(4) + (3)(3) + (4)(2) \] \[ = 8 + 9 + 8 = 25 \] **Step 2: Calculate the magnitudes of \( \mathbf{a} \) and \( \mathbf{b} \)** The magnitude of \( \mathbf{a} \) is given by: \[ |\mathbf{a}| = \sqrt{(2^2) + (3^2) + (4^2)} = \sqrt{4 + 9 + 16} = \sqrt{29} \] The magnitude of \( \mathbf{b} \) is given by: \[ |\mathbf{b}| = \sqrt{(4^2) + (3^2) + (2^2)} = \sqrt{16 + 9 + 4} = \sqrt{29} \] **Step 3: Substitute the values into the cosine formula** Now substituting the values into the cosine formula: \[ \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \frac{25}{\sqrt{29} \cdot \sqrt{29}} = \frac{25}{29} \] **Step 4: Calculate the angle \( \theta \)** To find the angle \( \theta \), we take the inverse cosine: \[ \theta = \cos^{-1}\left(\frac{25}{29}\right) \] This gives us the angle between the vectors \( \mathbf{a} \) and \( \mathbf{b} \). ### Summary of Steps: 1. Calculate the dot product \( \mathbf{a} \cdot \mathbf{b} \). 2. Calculate the magnitudes \( |\mathbf{a}| \) and \( |\mathbf{b}| \). 3. Use the cosine formula to find \( \cos \theta \). 4. Calculate \( \theta \) using the inverse cosine.

To find the angle between the vectors \( \mathbf{a} \) and \( \mathbf{b} \), we can use the formula for the cosine of the angle \( \theta \) between two vectors: \[ \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} \] **Step 1: Calculate the dot product \( \mathbf{a} \cdot \mathbf{b} \)** ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTORS

    DC PANDEY ENGLISH|Exercise Example|40 Videos
  • VECTORS

    DC PANDEY ENGLISH|Exercise check point 2.1|15 Videos
  • VECTORS

    DC PANDEY ENGLISH|Exercise Single Correct|39 Videos
  • UNITS, DIMENSIONS & ERROR ANALYSIS

    DC PANDEY ENGLISH|Exercise Medical entrances gallery|32 Videos
  • WAVE MOTION

    DC PANDEY ENGLISH|Exercise Integer Type Question|11 Videos

Similar Questions

Explore conceptually related problems

If vecA= hati+2hatj+3hatk, vecB=-hati+hatj + 4hatk and vecC= 3hati-3hatj-12hatk , then find the angle between the vector (vecA+vecB+vecC) and (vecAxx vecB) in degrees.

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If a=2hati+2hatj-8hatk and b=hati+3hatj-4hatk , then the magnitude of a+b is equal to

The position vectors of A and B are 3hati - hatj +7hatk and 4hati-3hatj-hatk . Find the magnitude and direction cosines of vec(AB) .

If veca=4hati+3hatj+2hatk and vecb=3hati+2hatk , find |vecbxx2veca|

If vectors A and B be respectively equal to 3hati - 4hatj + 5hatk and 2hati + 3hatj - 4hatk. Find the unit vector parallel t A + B

If vecomega=2hati-3hatj+4hatk and vecr=2hati-3hatj+2hatk then the linear velocity is

If a=3hati+hatj-4hatk,b=6hati+5hatj-2hatk, then find the area of a triangle whose adjacent sides are determined by a and b.