Home
Class 12
PHYSICS
Calculate the Q-values of the following ...

Calculate the Q-values of the following fusion reactions:
(a)`1^2H+1^2H rarr 1^3H+1^1H`.
`1^2H+1^2H rarr 2^3(He)+n`
`1^2H+1^3H rarr 2^4(He)+n`.
Atomic masses are `m(1^2H)=2.014102 u`, `m(1^3H)=3.016049 u`, `m(2^3(He))=3.016029 u`, `m(2^4(He))=4.002603 u`.

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the Q-values for the given fusion reactions, we will use the formula: \[ Q = \Delta m \cdot c^2 \] Where: - \( \Delta m \) is the difference in mass between the reactants and products. - \( c^2 \) is the conversion factor from mass to energy, which is approximately \( 931 \, \text{MeV/u} \). ### (a) Reaction: \( ^2_1H + ^2_1H \rightarrow ^3_1H + ^1_1H \) 1. **Identify the masses:** - Mass of \( ^2_1H \) (Deuterium) = \( 2.014102 \, u \) - Mass of \( ^3_1H \) (Tritium) = \( 3.016049 \, u \) - Mass of \( ^1_1H \) (Proton) = \( 1.007276 \, u \) 2. **Calculate total mass of reactants:** \[ \text{Total mass of reactants} = 2 \times m(^2_1H) = 2 \times 2.014102 \, u = 4.028204 \, u \] 3. **Calculate total mass of products:** \[ \text{Total mass of products} = m(^3_1H) + m(^1_1H) = 3.016049 \, u + 1.007276 \, u = 4.023325 \, u \] 4. **Calculate \( \Delta m \):** \[ \Delta m = \text{Total mass of reactants} - \text{Total mass of products} = 4.028204 \, u - 4.023325 \, u = 0.004879 \, u \] 5. **Calculate Q-value:** \[ Q = \Delta m \cdot c^2 = 0.004879 \, u \cdot 931 \, \text{MeV/u} \approx 4.55 \, \text{MeV} \] ### (b) Reaction: \( ^2_1H + ^2_1H \rightarrow ^3_2He + n \) 1. **Identify the masses:** - Mass of \( ^2_1H \) = \( 2.014102 \, u \) - Mass of \( ^3_2He \) = \( 3.016029 \, u \) - Mass of neutron \( n \) = \( 1.008665 \, u \) 2. **Calculate total mass of reactants:** \[ \text{Total mass of reactants} = 2 \times m(^2_1H) = 4.028204 \, u \] 3. **Calculate total mass of products:** \[ \text{Total mass of products} = m(^3_2He) + m(n) = 3.016029 \, u + 1.008665 \, u = 4.024694 \, u \] 4. **Calculate \( \Delta m \):** \[ \Delta m = 4.028204 \, u - 4.024694 \, u = 0.003510 \, u \] 5. **Calculate Q-value:** \[ Q = 0.003510 \, u \cdot 931 \, \text{MeV/u} \approx 3.26 \, \text{MeV} \] ### (c) Reaction: \( ^2_1H + ^3_1H \rightarrow ^4_2He + n \) 1. **Identify the masses:** - Mass of \( ^2_1H \) = \( 2.014102 \, u \) - Mass of \( ^3_1H \) = \( 3.016049 \, u \) - Mass of \( ^4_2He \) = \( 4.002603 \, u \) 2. **Calculate total mass of reactants:** \[ \text{Total mass of reactants} = m(^2_1H) + m(^3_1H) = 2.014102 \, u + 3.016049 \, u = 5.030151 \, u \] 3. **Calculate total mass of products:** \[ \text{Total mass of products} = m(^4_2He) + m(n) = 4.002603 \, u + 1.008665 \, u = 5.011268 \, u \] 4. **Calculate \( \Delta m \):** \[ \Delta m = 5.030151 \, u - 5.011268 \, u = 0.018883 \, u \] 5. **Calculate Q-value:** \[ Q = 0.018883 \, u \cdot 931 \, \text{MeV/u} \approx 17.57 \, \text{MeV} \] ### Summary of Q-values: - (a) \( Q \approx 4.55 \, \text{MeV} \) - (b) \( Q \approx 3.26 \, \text{MeV} \) - (c) \( Q \approx 17.57 \, \text{MeV} \)

To calculate the Q-values for the given fusion reactions, we will use the formula: \[ Q = \Delta m \cdot c^2 \] Where: - \( \Delta m \) is the difference in mass between the reactants and products. - \( c^2 \) is the conversion factor from mass to energy, which is approximately \( 931 \, \text{MeV/u} \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODERN PHYSICS - 2

    DC PANDEY ENGLISH|Exercise Level 1 Subjective Questions|1 Videos
  • MODERN PHYSICS - 2

    DC PANDEY ENGLISH|Exercise Level 2 Single Correct|13 Videos
  • MODERN PHYSICS - 2

    DC PANDEY ENGLISH|Exercise Level 1 Objective|17 Videos
  • MODERN PHYSICS - 1

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|23 Videos
  • NUCLEI

    DC PANDEY ENGLISH|Exercise C MADICAL ENTRANCES GALLERY|46 Videos

Similar Questions

Explore conceptually related problems

Calculate the energy released in the following reaction ._3Li^6 + ._0n^1 to ._2He^4 + ._1H^3

The Q value of a nuclear reaction A+b=C+d is defined by Q=[m_A+m_b-m_C-m_d]c^2 where the masses refer to the respective nuclei. Determine form the given data the Q value of the following reactions and state whether the reactions are exothermic of endothermic. (i) ._1H^(1)+._1H^3to ._1H^2+._1H^2 (ii) ._6C^(12)+._6C^(12) to ._10Ne^(20)+._2He^4 Atomic masses are given to be m(._1H^2)=2.014102u , m(._1H^3)=3.016049 u, m(._6C^(12))=12.000000u , m(._10Ne^(20))=19.992439u

Complete the following fusion reactions : (a) ""_(2)^(3) He +_(1)^(2) H to_2 He + _1 H + en ergy (b) ""_(1)^(2) He +_(1)^(2) H to_2 He + ^1 n + en ergy

A star initially has 10^40 deuterons. It produces energy via the processes _1^2H+_1^2Hrarr_1^3H+p and _1^2H+_1^3Hrarr_2^4He+n . Where the masses of the nuclei are m( ^2H)=2.014 amu, m(p)=1.007 amu, m(n)=1.008 amu and m( ^4He)=4.001 amu. If the average power radiated by the star is 10^16 W , the deuteron supply of the star is exhausted in a time of the order of

Calculate the energy released in the following nuclear reaction: ""_(1)^(2)H+ ""_(1)^(2)H =""_(2)^(4)He Mass of ""_(1)^(2)H = 2.01419u, Mass of ""_(2)^(4)He =4.00277u

Balance the following nuclear reactions: a. ._(3)Li^(7) + ._(0)n^(1) rarr 2 ._(2)He^(4) + ? b. ._(42)Mo^(94) + ._(1)H^(2) rarr ._(0)n^(1) + ?

Calculate the energy released in the following: ._(1)H^(2) + ._(1)H^(3) rarr ._(2)He^(4) + ._(0)n^(1) (Given masses : H^(2) = 2.014, H^(3) = 3.016, He = 4.003, n = 1.009 m_(u))

Calculate the energy released in joules and MeV in the following nuclear reaction: ._(1)H^(2) + ._(1)H^(2) rarr ._(2)He^(3) + ._(0)n^(1) Assume that the masses of ._(1)H^(2) , ._(2)He^(3) , and neutron (n) , respectively, are 2.40, 3.0160, and 1.0087 in amu.

The nuclear reaction .^2H+.^2H rarr .^4 He (mass of deuteron = 2.0141 a.m.u and mass of He = 4.0024 a.m.u ) is

Which of the following statement is not true for ._(1)H^(1),._(1)H^(2),._(1)H^(3) respectively -