Home
Class 12
PHYSICS
The atomic masses of the hydrogen isotop...

The atomic masses of the hydrogen isotopes are
Hydrogen `m_1H^1=1.007825` amu
Deuterium `m_1H^2=2.014102` amu
Tritium `m_1H^3=3.016049` amu
The mass of deuterium, `_1H^2` that would be needed to generate 1 kWh. (energy released by 1 fusion is 4MeV)

A

(a) `3.7kg`

B

(b) `3.7g`

C

(c) `3.7xx10^-5kg`

D

(d) `3.7xx10^-8kg`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the mass of deuterium needed to generate 1 kWh of energy, we will follow these steps: ### Step 1: Convert 1 kWh to Joules 1 kWh (kilowatt-hour) is equivalent to \( 1 \text{ kW} \times 3600 \text{ s} \). \[ 1 \text{ kWh} = 1000 \text{ W} \times 3600 \text{ s} = 3.6 \times 10^6 \text{ J} \] ### Step 2: Convert the energy released per fusion from MeV to Joules The energy released by one fusion reaction is given as 4 MeV. We need to convert this to Joules using the conversion factor \( 1 \text{ MeV} = 1.6 \times 10^{-13} \text{ J} \). \[ E = 4 \text{ MeV} \times 1.6 \times 10^{-13} \text{ J/MeV} = 6.4 \times 10^{-13} \text{ J} \] ### Step 3: Calculate the number of fusion reactions required Using the power equation \( P = n \cdot E \), where \( n \) is the number of fusion reactions, we can rearrange to find \( n \): \[ n = \frac{P}{E} \] Substituting the values: \[ n = \frac{3.6 \times 10^6 \text{ J}}{6.4 \times 10^{-13} \text{ J}} \approx 5.625 \times 10^{18} \] ### Step 4: Determine the number of deuterium nuclei needed Since each fusion reaction requires 2 deuterium nuclei, the total number of deuterium nuclei required is: \[ n' = 2n = 2 \times 5.625 \times 10^{18} \approx 1.125 \times 10^{19} \] ### Step 5: Calculate the mass of deuterium needed The mass of deuterium can be calculated using the formula: \[ \text{mass} = \frac{n' \cdot m_d}{N_A} \] where \( m_d \) is the mass of deuterium (2.014102 amu) and \( N_A \) is Avogadro's number (\( 6.022 \times 10^{23} \) nuclei/mol). First, convert the mass of deuterium from amu to kg: \[ m_d = 2.014102 \text{ amu} \times 1.66 \times 10^{-27} \text{ kg/amu} \approx 3.34 \times 10^{-27} \text{ kg} \] Now substituting the values: \[ \text{mass} = \frac{1.125 \times 10^{19} \cdot 3.34 \times 10^{-27} \text{ kg}}{6.022 \times 10^{23}} \approx 0.3735 \times 10^{-4} \text{ kg} \] ### Step 6: Convert the mass to kg Finally, we convert the mass into a more manageable form: \[ \text{mass} \approx 3.735 \times 10^{-8} \text{ kg} \] ### Final Answer The mass of deuterium needed to generate 1 kWh of energy is approximately: \[ \text{mass} \approx 3.73 \times 10^{-8} \text{ kg} \] ---

To solve the problem of finding the mass of deuterium needed to generate 1 kWh of energy, we will follow these steps: ### Step 1: Convert 1 kWh to Joules 1 kWh (kilowatt-hour) is equivalent to \( 1 \text{ kW} \times 3600 \text{ s} \). \[ 1 \text{ kWh} = 1000 \text{ W} \times 3600 \text{ s} = 3.6 \times 10^6 \text{ J} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODERN PHYSICS - 2

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|10 Videos
  • MODERN PHYSICS - 2

    DC PANDEY ENGLISH|Exercise Level 2 More Than One Correct|6 Videos
  • MODERN PHYSICS - 1

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|23 Videos
  • NUCLEI

    DC PANDEY ENGLISH|Exercise C MADICAL ENTRANCES GALLERY|46 Videos

Similar Questions

Explore conceptually related problems

The atomic masses of the hydrogen isotopes are Hydrogen m_1H^1=1.007825 amu Deuterium m_1H^2=2.014102 amu Tritium m_1H^3=3.016049 amu The number of fusion reactions required to generate 1kWh is nearly

The atomic masses of the hydrogen isotopes are Hydrogen m_1H^1=1.007825 amu Deuterium m_1H^2=2.014102 amu Tritium m_1H^3=3.016049 amu The energy released in the reaction, _1H^2+_1H^2rarr_1H^3+_1H^1 is nearly

Knowledge Check

  • The binding energy per nucleon of deuterium and helium nuclei are 1.1 MeV and 7.0 MeV respectively. When two deuterium nuclei fuse to form a helium nucleus the energy released in the fusion is

    A
    23.6 MeV
    B
    2.2 MeV
    C
    28.0 MeV
    D
    30.2 MeV
  • Similar Questions

    Explore conceptually related problems

    The correct order of wavelength of Hydrogen (._(1)H^(1)) , Deuterium (._(1)H^(2)) and Tritium (._(1)H^(3)) moving with same kinetic energy is

    The atomic mass of _1^1H is 1.00783 u . Calculate the mass excess of hydrogen.

    Energy released in fusion of 1 kg of deuterium nuclei.

    The mass of one atom of hydrogen is 1.008 amu. Calculate the mass of 26 atoms of hydrogen.

    Calculate the binding energy for ._(1)H^(2) atom. The mass of ._(1)H^(2) atom is 2.014102 amu where 1n and 1p have their weights 2.016490 amu. Neglect mass of electron.

    Consider the reaction _1^2H+_1^2H=_2^4He+Q . Mass of the deuterium atom =2.0141u . Mass of helium atom =4.0024u . This is a nuclear………reaction in which the energy Q released is…………MeV.

    Calculate the mass of 1 amu in grams.