The atomic masses of the hydrogen isotopes are Hydrogen `m_1H^1=1.007825` amu Deuterium `m_1H^2=2.014102` amu Tritium `m_1H^3=3.016049` amu The mass of deuterium, `_1H^2` that would be needed to generate 1 kWh. (energy released by 1 fusion is 4MeV)
A
(a) `3.7kg`
B
(b) `3.7g`
C
(c) `3.7xx10^-5kg`
D
(d) `3.7xx10^-8kg`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem of finding the mass of deuterium needed to generate 1 kWh of energy, we will follow these steps:
### Step 1: Convert 1 kWh to Joules
1 kWh (kilowatt-hour) is equivalent to \( 1 \text{ kW} \times 3600 \text{ s} \).
\[
1 \text{ kWh} = 1000 \text{ W} \times 3600 \text{ s} = 3.6 \times 10^6 \text{ J}
\]
### Step 2: Convert the energy released per fusion from MeV to Joules
The energy released by one fusion reaction is given as 4 MeV. We need to convert this to Joules using the conversion factor \( 1 \text{ MeV} = 1.6 \times 10^{-13} \text{ J} \).
\[
E = 4 \text{ MeV} \times 1.6 \times 10^{-13} \text{ J/MeV} = 6.4 \times 10^{-13} \text{ J}
\]
### Step 3: Calculate the number of fusion reactions required
Using the power equation \( P = n \cdot E \), where \( n \) is the number of fusion reactions, we can rearrange to find \( n \):
\[
n = \frac{P}{E}
\]
Substituting the values:
\[
n = \frac{3.6 \times 10^6 \text{ J}}{6.4 \times 10^{-13} \text{ J}} \approx 5.625 \times 10^{18}
\]
### Step 4: Determine the number of deuterium nuclei needed
Since each fusion reaction requires 2 deuterium nuclei, the total number of deuterium nuclei required is:
\[
n' = 2n = 2 \times 5.625 \times 10^{18} \approx 1.125 \times 10^{19}
\]
### Step 5: Calculate the mass of deuterium needed
The mass of deuterium can be calculated using the formula:
\[
\text{mass} = \frac{n' \cdot m_d}{N_A}
\]
where \( m_d \) is the mass of deuterium (2.014102 amu) and \( N_A \) is Avogadro's number (\( 6.022 \times 10^{23} \) nuclei/mol). First, convert the mass of deuterium from amu to kg:
\[
m_d = 2.014102 \text{ amu} \times 1.66 \times 10^{-27} \text{ kg/amu} \approx 3.34 \times 10^{-27} \text{ kg}
\]
Now substituting the values:
\[
\text{mass} = \frac{1.125 \times 10^{19} \cdot 3.34 \times 10^{-27} \text{ kg}}{6.022 \times 10^{23}} \approx 0.3735 \times 10^{-4} \text{ kg}
\]
### Step 6: Convert the mass to kg
Finally, we convert the mass into a more manageable form:
\[
\text{mass} \approx 3.735 \times 10^{-8} \text{ kg}
\]
### Final Answer
The mass of deuterium needed to generate 1 kWh of energy is approximately:
\[
\text{mass} \approx 3.73 \times 10^{-8} \text{ kg}
\]
---
To solve the problem of finding the mass of deuterium needed to generate 1 kWh of energy, we will follow these steps:
### Step 1: Convert 1 kWh to Joules
1 kWh (kilowatt-hour) is equivalent to \( 1 \text{ kW} \times 3600 \text{ s} \).
\[
1 \text{ kWh} = 1000 \text{ W} \times 3600 \text{ s} = 3.6 \times 10^6 \text{ J}
\]
...
Topper's Solved these Questions
MODERN PHYSICS - 2
DC PANDEY ENGLISH|Exercise Level 2 Subjective|10 Videos
MODERN PHYSICS - 2
DC PANDEY ENGLISH|Exercise Level 2 More Than One Correct|6 Videos
MODERN PHYSICS - 1
DC PANDEY ENGLISH|Exercise Level 2 Subjective|23 Videos
NUCLEI
DC PANDEY ENGLISH|Exercise C MADICAL ENTRANCES GALLERY|46 Videos
Similar Questions
Explore conceptually related problems
The atomic masses of the hydrogen isotopes are Hydrogen m_1H^1=1.007825 amu Deuterium m_1H^2=2.014102 amu Tritium m_1H^3=3.016049 amu The number of fusion reactions required to generate 1kWh is nearly
The atomic masses of the hydrogen isotopes are Hydrogen m_1H^1=1.007825 amu Deuterium m_1H^2=2.014102 amu Tritium m_1H^3=3.016049 amu The energy released in the reaction, _1H^2+_1H^2rarr_1H^3+_1H^1 is nearly
The correct order of wavelength of Hydrogen (._(1)H^(1)) , Deuterium (._(1)H^(2)) and Tritium (._(1)H^(3)) moving with same kinetic energy is
The atomic mass of _1^1H is 1.00783 u . Calculate the mass excess of hydrogen.
Energy released in fusion of 1 kg of deuterium nuclei.
The mass of one atom of hydrogen is 1.008 amu. Calculate the mass of 26 atoms of hydrogen.
Calculate the binding energy for ._(1)H^(2) atom. The mass of ._(1)H^(2) atom is 2.014102 amu where 1n and 1p have their weights 2.016490 amu. Neglect mass of electron.
Consider the reaction _1^2H+_1^2H=_2^4He+Q . Mass of the deuterium atom =2.0141u . Mass of helium atom =4.0024u . This is a nuclear………reaction in which the energy Q released is…………MeV.
Calculate the mass of 1 amu in grams.
The binding energy per nucleon of deuterium and helium nuclei are 1.1 MeV and 7.0 MeV respectively. When two deuterium nuclei fuse to form a helium nucleus the energy released in the fusion is
DC PANDEY ENGLISH-MODERN PHYSICS - 2-Level 2 Comprehension Based