Match the following
`{:(,"Table - 1",,"Table - 2",),((A),sigma^(2)//epsi_(0),(P),C^(2)//J - m,),((B),epsi_(0),(Q),"Farad",),((C),("ampere - second")/("Volt"),(R),J//m^(3),),((D),(V)/(E),(S),"metre",):}`
Match the following
`{:(,"Table - 1",,"Table - 2",),((A),sigma^(2)//epsi_(0),(P),C^(2)//J - m,),((B),epsi_(0),(Q),"Farad",),((C),("ampere - second")/("Volt"),(R),J//m^(3),),((D),(V)/(E),(S),"metre",):}`
`{:(,"Table - 1",,"Table - 2",),((A),sigma^(2)//epsi_(0),(P),C^(2)//J - m,),((B),epsi_(0),(Q),"Farad",),((C),("ampere - second")/("Volt"),(R),J//m^(3),),((D),(V)/(E),(S),"metre",):}`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the matching question between Table 1 and Table 2, we will analyze the units provided in Table 1 and find their corresponding matches in Table 2.
### Step-by-Step Solution:
1. **Identify the Units in Table 1:**
- (A) \( \frac{\sigma^2}{\epsilon_0} \)
- (B) \( \epsilon_0 \)
- (C) \( \frac{\text{ampere} \cdot \text{second}}{\text{Volt}} \)
- (D) \( \frac{V}{E} \)
2. **Match (D) \( \frac{V}{E} \):**
- The unit \( \frac{V}{E} \) can be interpreted as \( \frac{\text{Voltage}}{\text{Electric Field}} \).
- From the relationship \( V = E \cdot L \), we can deduce that \( \frac{V}{E} = L \), where \( L \) is a length.
- Therefore, \( D \) matches with \( S \) (metre).
3. **Match (C) \( \frac{\text{ampere} \cdot \text{second}}{\text{Volt}} \):**
- The unit \( \frac{\text{ampere} \cdot \text{second}}{\text{Volt}} \) can be rewritten as \( \frac{I \cdot T}{V} \).
- This can be interpreted as charge \( Q \) (since \( Q = I \cdot T \)) divided by potential \( V \).
- The unit of capacitance is Farad, which is defined as \( \frac{C}{V} \).
- Thus, \( C \) matches with \( Q \) (Farad).
4. **Match (B) \( \epsilon_0 \):**
- The permittivity of free space \( \epsilon_0 \) can be derived from the equation \( F = \frac{1}{4 \pi \epsilon_0} \frac{Q_1 Q_2}{R^2} \).
- Rearranging gives \( \epsilon_0 = \frac{Q^2}{4 \pi F R^2} \).
- The unit of \( \epsilon_0 \) can be expressed in terms of charge (Coulombs) and force (Newtons), leading to \( \text{Farad} \) (since \( \text{Farad} = \frac{C}{V} \)).
- Therefore, \( B \) matches with \( P \) (Farad).
5. **Match (A) \( \frac{\sigma^2}{\epsilon_0} \):**
- The surface charge density \( \sigma \) has units of \( \frac{C}{m^2} \).
- Thus, \( \sigma^2 \) has units of \( \frac{C^2}{m^4} \).
- Dividing by \( \epsilon_0 \) (which has units of \( \frac{C^2}{N \cdot m^2} \)), we get \( \frac{C^2/m^4}{C^2/(N \cdot m^2)} = \frac{N}{m^2} \).
- This is equivalent to \( J/m^3 \) (Joules per cubic meter).
- Therefore, \( A \) matches with \( R \) (J/m³).
### Final Matches:
- (A) \( \frac{\sigma^2}{\epsilon_0} \) → \( R \) (J/m³)
- (B) \( \epsilon_0 \) → \( P \) (Farad)
- (C) \( \frac{\text{ampere} \cdot \text{second}}{\text{Volt}} \) → \( Q \) (Farad)
- (D) \( \frac{V}{E} \) → \( S \) (metre)
### Summary of Matches:
- A → R
- B → P
- C → Q
- D → S
|
Topper's Solved these Questions
ELECTROSTATICS
DC PANDEY ENGLISH|Exercise Integer|17 VideosView PlaylistELECTROSTATICS
DC PANDEY ENGLISH|Exercise Comprehension|36 VideosView PlaylistELASTICITY
DC PANDEY ENGLISH|Exercise Medical entrances s gallery|21 VideosView PlaylistEXPERIMENTS
DC PANDEY ENGLISH|Exercise Subjective|15 VideosView Playlist
Similar Questions
Explore conceptually related problems
Match the following |{:(,"Table-1",,"Table-2"),((A),"Stress"xx"Strain",(P),J),((B),(YA)/l,(Q),N//m),((C),Yl^(3),(R),J//m^(3)),((D),(Fl)/(AY),(S),m):}|
Watch solution
Match the following {:(,,"Table-1",,"Table-2"),(,(A),L,(P),[M^(0)L^(0)T^(-2)]),(,(B),"Magnetic Flux",(Q),[ML^(2)T^(-2)A^(-1)]),(,(C),LC,(R),[ML^(2)T^(-2)A^(-2)]),(,(D),CR^(2),(S),"None"):}
Watch solution
Match the following. |{:(,"Table-1",,"Table-2"),((A),"Coefficient of viscosity",(P),[M^(2)L^(-1)T^(-2)]),((B),"Surface tension",(Q),[ML^(0)T^(-2)]),((C),"Modulus of elasticity",(R),[ML^(-1) T^(-2)]),((D),"Energy per unit volume",(S),"None"),(,"of a fiuid",,):}|
Watch solution
Match the following : {:(,"Column-I",,"Column-II"),((A),3s^(1),(p),n=3),((B), 3p^(1),(q), l=0),((C ), 4s^(1),(r ) , l=1),((D),4d^(1),(s),m=0),(,,(t),m=+-1):}
Watch solution
Comparing L-C oscillation with the oscillation if spring-block-system, match the following table. Comparing L-C oscillations with the oscillations of spring-block sytem, match the following table {:(,,underset(("LC oscillations"))"Table-1",,underset(("Spring-block oscillations"))"Table-2"),(,(A),L,(P),k),(,(B),C,(Q),m),(,(C),i,(R),v),(,(D),(di)/(dt),(S),x),(,,,(T),"None"):}
Watch solution
Match the following {:(,P,Q,R,S),((A),1,2,4,3),((B),2,1,4,3),((C ),4,1,3,2),((D ),4,3,2,1):}
Watch solution
Match the following |{:(" Table-1"," Table-2"),((A)" Steel",(P)" Young's modulus of"),(," elasticity"),((B)" Water",(Q)" Bulk modulus of elasticity"),((C)" Hydrogen gas filled",(R)" sheer modulus of"),(" in a chamber"," elasticity"),(,):}|
Watch solution
In the diagram shown in figure mass of both the balls in same. Match the following columns. {:("Column1","Column2"),("A For" v^(')=v,"P e=0"),("B For" v^(')=v//2,"Q e=1"),("C For" v^(')= 3//4v,"R e=1/2"),("-","(S data is insufficient"):}
Watch solution
Find the equations of the planes that passes through three points. (a) ( b ) (c)(( d ) (e)1," "1," "" "1( f ))," "(( g ) (h)6," "4," "" "5( i ))," "(( j ) (k) " "4," "" "2," "3( l ))( m ) (n) (o) ( p ) (q)(( r ) (s)1," "1," "0( t ))," "((
Watch solution
In which of the following differential equation degree is not defined? (a) ( b ) (c) (d)(( e ) (f) d^(( g )2( h ))( i ) y)/( j )(( k ) d (l) x^(( m )2( n ))( o ))( p ) (q)+3( r ) (s)(( t ) (u) (v)(( w ) dy)/( x )(( y ) dx)( z ) (aa) (bb))^(( c c )2( d d ))( e e )=xlog( f f )(( g g ) (hh) d^(( i i )2( j j ))( k k ) y)/( l l )(( m m ) d (nn) x^(( o o )2( p p ))( q q ))( r r ) (ss) (tt) (uu) (vv) ( w w ) (xx) (yy)(( z z ) (aaa) d^(( b b b )2( c c c ))( d d d ) y)/( e e e )(( f f f ) d (ggg) x^(( h h h )2( i i i ))( j j j ))( k k k ) (lll)+( m m m ) (nnn)(( o o o ) (ppp) (qqq)(( r r r ) dy)/( s s s )(( t t t ) dx)( u u u ) (vvv) (www))^(( x x x )2( y y y ))( z z z )=xsin( a a a a )(( b b b b ) (cccc) d^(( d d d d )2( e e e e ))( f f f f ) y)/( g g g g )(( h h h h ) d (iiii) x^(( j j j j )2( k k k k ))( l l l l ))( m m m m ) (nnnn) (oooo) (pppp) (qqqq) ( r r r r ) (ssss) x=sin(( t t t t ) (uuuu) (vvvv)(( w w w w ) dy)/( x x x x )(( y y y y ) dx)( z z z z ) (aaaaa)-2y (bbbbb)),|x|<1( c c c c c ) (ddddd) (eeeee) ( f f f f f ) (ggggg) x-2y=log(( h h h h h ) (iiiii) (jjjjj)(( k k k k k ) dy)/( l l l l l )(( m m m m m ) dx)( n n n n n ) (ooooo) (ppppp))( q q q q q ) (rrrrr)
Watch solution