Home
Class 11
PHYSICS
If a vector vec(A) make angles alpha , b...

If a vector `vec(A)` make angles `alpha , beta ` and `gamma`, respectively , with the `X , Y` and `Z` axes , then `sin^(2) alpha + sin^(2) beta + sin^(2) gamma =`

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma \) where \( \alpha, \beta, \gamma \) are the angles that a vector \( \vec{A} \) makes with the \( X, Y, \) and \( Z \) axes, respectively. ### Step-by-Step Solution: 1. **Understanding the Angles**: The angles \( \alpha, \beta, \gamma \) are the angles between the vector \( \vec{A} \) and the coordinate axes. We know that: \[ \cos \alpha = \frac{A_x}{|\vec{A}|}, \quad \cos \beta = \frac{A_y}{|\vec{A}|}, \quad \cos \gamma = \frac{A_z}{|\vec{A}|} \] where \( A_x, A_y, A_z \) are the components of the vector \( \vec{A} \) along the \( X, Y, \) and \( Z \) axes, and \( |\vec{A}| \) is the magnitude of the vector. 2. **Using the Pythagorean Identity**: We know that for any angle \( \theta \): \[ \sin^2 \theta + \cos^2 \theta = 1 \] Therefore, we can express \( \sin^2 \alpha, \sin^2 \beta, \sin^2 \gamma \) in terms of \( \cos^2 \alpha, \cos^2 \beta, \cos^2 \gamma \): \[ \sin^2 \alpha = 1 - \cos^2 \alpha, \quad \sin^2 \beta = 1 - \cos^2 \beta, \quad \sin^2 \gamma = 1 - \cos^2 \gamma \] 3. **Substituting into the Equation**: Now, substituting these into the original equation: \[ \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = (1 - \cos^2 \alpha) + (1 - \cos^2 \beta) + (1 - \cos^2 \gamma) \] Simplifying this gives: \[ \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 3 - (\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma) \] 4. **Finding the Sum of Cosine Squares**: The sum of the squares of the cosines can be expressed as: \[ \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = \frac{A_x^2}{|\vec{A}|^2} + \frac{A_y^2}{|\vec{A}|^2} + \frac{A_z^2}{|\vec{A}|^2} \] Since \( |\vec{A}|^2 = A_x^2 + A_y^2 + A_z^2 \), we can write: \[ \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = \frac{A_x^2 + A_y^2 + A_z^2}{A_x^2 + A_y^2 + A_z^2} = 1 \] 5. **Final Calculation**: Now substituting back into the equation: \[ \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 3 - 1 = 2 \] Thus, the final answer is: \[ \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2 \]

To solve the problem, we need to find the value of \( \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma \) where \( \alpha, \beta, \gamma \) are the angles that a vector \( \vec{A} \) makes with the \( X, Y, \) and \( Z \) axes, respectively. ### Step-by-Step Solution: 1. **Understanding the Angles**: The angles \( \alpha, \beta, \gamma \) are the angles between the vector \( \vec{A} \) and the coordinate axes. We know that: \[ \cos \alpha = \frac{A_x}{|\vec{A}|}, \quad \cos \beta = \frac{A_y}{|\vec{A}|}, \quad \cos \gamma = \frac{A_z}{|\vec{A}|} ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

Vector vecP angle alpha,beta and gamma with the x,y and z axes respectively. Then sin^(2)alpha+sin^(2)beta+sin^(2)gamma=

A vector makes angles alpha,beta "and" gamma with the X,Y and Z axes respectively . Find the value of the expression (sin^(2)alpha+sin^(2)beta+sin^(2)gamma)/(cos^(2)alpha+cos^(2)beta+cos^(2)gamma)

Knowledge Check

  • If a line makes angles alpha, beta, gamma when the positive direction of coordinates axes, then write the value of sin^(2) alpha + sin^(2) beta + sin^(2) gamma .

    A
    3
    B
    2
    C
    1
    D
    4
  • If vec(A) makes an angle alpha, beta and gamma from x,y and z axis respectively then sin^(2)alpha+sin^(2) beta+sin^(2) gamma=

    A
    0
    B
    1
    C
    2
    D
    3
  • Similar Questions

    Explore conceptually related problems

    If a vector makes angle alpha,beta,gamma with OX, OY and OZ respectively, then write the value of sin^2alpha+sin^2beta+sin^2gammadot

    If a vector makes angles alpha,beta,gamma. with . OX ,O Ya n dO Z respectively, prove that sin^2alpha+sin^2beta+sin^2gamma=2.

    If a line makes angles alpha,beta,gamma with the positive direction of coordinate axes, then write the value of sin^2alpha+sin^2beta+sin^2gammadot

    Points veca , vecb vecc and vecd are coplanar and (sin alpha)veca + (2sin 2beta) vecb + (3sin 3gamma) vecc - vecd= vec0 . Then the least value of sin^(2) alpha + sin^(2) 2beta + sin^(2) 3gamma is

    A line makes angles alpha,beta and gamma with the coordinate axes. If alpha+beta=90^0, then find gamma .

    If a line makes anles alpha, beta, gamma with the coordinate axes, porve that sin^2alpha+sin^2beta+sin^2gamma=2