Home
Class 11
PHYSICS
Calculate the energy in MeV equivalent ...

Calculate the energy in MeV equivalent to the rest mass of an electron . Given that the rest mass of an electron , `m=9.1 xx 10^(-31) kg`, `1MeV = 1.6 xx 10^(-13) J` and speed of light , `c= 3 xx 10 ^(8) ms ^(-1)`.

Text Solution

AI Generated Solution

To calculate the energy equivalent to the rest mass of an electron in MeV, we will follow these steps: ### Step 1: Use the mass-energy equivalence formula The energy \( E \) can be calculated using the formula: \[ E = mc^2 \] where: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • WORK, ENERGY AND POWER

    DC PANDEY ENGLISH|Exercise CHECK POINT 6.1|20 Videos
  • WORK, ENERGY AND POWER

    DC PANDEY ENGLISH|Exercise CHECK POINT 6.2|20 Videos
  • WORK, ENERGY & POWER

    DC PANDEY ENGLISH|Exercise Level 2 Comprehension Based|2 Videos
  • WORK, POWER AND ENERGY

    DC PANDEY ENGLISH|Exercise E Integer Type Questions|11 Videos

Similar Questions

Explore conceptually related problems

The speed of light in vacuum is 3 xx 10^8 ms^(-1)

The mass of half mole of electrons is about (Given: Mass of electron =9.1 xx10^(-28) g)

Calculate the loss in mass equivalent to the energy 1.0 xx 10^6 kWh .

Determine the de Broglie wavelength of a proton, whose kinetice energy is equal to the rest of the mass energy of an electron. Given that the mass of an electron is 9xx10^(-31) kg and the mass of a proton is 1837 times as that of the electron.

The mass of an electron is 9. 1 xx 10^(-31) kg . If its K.E. is 3. 0 xx 10 ^(25) J . Calculate its wavelength .

An electron beam has a kinetic energy equal to 100 eV . Find its wavelength associated with a beam , if mass of electron = 9.1 xx 10^(-31) " kg and 1 eV " = 1.6 xx 10^(-19) J . (Planks's constant = 6.6 xx 10^(-34) J-s)

When would the wavelength associated with an electron become equal to that with proton ? (Mass of electron = 9.10 xx 10^(-31) kg , Mass of proton =1.6725 xx 10^(-27)kg )

Determine the mass of an electron if for an electron e/m=1.759 xx 10^(8) Cg^(-1) and e=1.6021 xx 10^(-19)C

The mass fo an electron is 9. 1 xx 10^(-31) kg . If its K.E. is 3. 0 xx 10 ^(25) J . Calculate its wavelength .

Compute the difference in masses of 10^(3) moles of each of magnesium atoms and magnesium ions. (Mass of an electron =9.1 xx 10^(-31) kg)