Home
Class 14
MATHS
The average of 4(3/5),2(2/3),6(8/9),7(7/...

The average of `4(3/5)`,`2(2/3)`,`6(8/9)`,`7(7/15)`,`3(5/9)` is:

A

`5(3/225)`

B

`5(8/225)`

C

`6(3/45)`

D

`25(8/45)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the average of the numbers \(4 \frac{3}{5}\), \(2 \frac{2}{3}\), \(6 \frac{8}{9}\), \(7 \frac{7}{15}\), and \(3 \frac{5}{9}\), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions 1. Convert each mixed number to an improper fraction: - \(4 \frac{3}{5} = \frac{4 \times 5 + 3}{5} = \frac{20 + 3}{5} = \frac{23}{5}\) - \(2 \frac{2}{3} = \frac{2 \times 3 + 2}{3} = \frac{6 + 2}{3} = \frac{8}{3}\) - \(6 \frac{8}{9} = \frac{6 \times 9 + 8}{9} = \frac{54 + 8}{9} = \frac{62}{9}\) - \(7 \frac{7}{15} = \frac{7 \times 15 + 7}{15} = \frac{105 + 7}{15} = \frac{112}{15}\) - \(3 \frac{5}{9} = \frac{3 \times 9 + 5}{9} = \frac{27 + 5}{9} = \frac{32}{9}\) ### Step 2: Find a Common Denominator 2. The denominators are \(5\), \(3\), \(9\), and \(15\). The least common multiple (LCM) of these numbers is \(45\). ### Step 3: Convert Each Fraction to the Common Denominator 3. Convert each fraction to have a denominator of \(45\): - \(\frac{23}{5} = \frac{23 \times 9}{5 \times 9} = \frac{207}{45}\) - \(\frac{8}{3} = \frac{8 \times 15}{3 \times 15} = \frac{120}{45}\) - \(\frac{62}{9} = \frac{62 \times 5}{9 \times 5} = \frac{310}{45}\) - \(\frac{112}{15} = \frac{112 \times 3}{15 \times 3} = \frac{336}{45}\) - \(\frac{32}{9} = \frac{32 \times 5}{9 \times 5} = \frac{160}{45}\) ### Step 4: Add All the Fractions 4. Now, add all the fractions: \[ \frac{207}{45} + \frac{120}{45} + \frac{310}{45} + \frac{336}{45} + \frac{160}{45} = \frac{207 + 120 + 310 + 336 + 160}{45} = \frac{1133}{45} \] ### Step 5: Calculate the Average 5. To find the average, divide the total sum by the number of values (which is \(5\)): \[ \text{Average} = \frac{1133}{45 \times 5} = \frac{1133}{225} \] ### Step 6: Simplify the Result 6. The average in mixed number form: - Divide \(1133\) by \(225\) to find the whole number and the remainder: - \(1133 \div 225 = 5\) remainder \(8\), so: \[ \text{Average} = 5 \frac{8}{225} \] ### Final Answer The average of the numbers \(4 \frac{3}{5}\), \(2 \frac{2}{3}\), \(6 \frac{8}{9}\), \(7 \frac{7}{15}\), and \(3 \frac{5}{9}\) is: \[ \boxed{5 \frac{8}{225}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALLIGATIONS

    QUANTUM CAT|Exercise QUESTION BANK|54 Videos
  • CI/ SI/ INSTALMENTS

    QUANTUM CAT|Exercise QUESTION BANK |99 Videos

Similar Questions

Explore conceptually related problems

Write the set {(1)/(2),(2)/(3),(3)/(4),(4)/(5),(5)/(6),(6)/(7),(7)/(8),(8)/(9),(9)/(10)} in the set builder form.

Which of the following has fractions in ascending order? 2/3,3/5,7/9,9/(11),8/9 (b) 3/5,2/3,9/(11),7/9,8/9 (c) 3/5,2/3,7/9,9/(11),8/9 (d) 8/9,9/(11),7/9,2/3,3/5 (e) 8/9,9/(11),7/9,3/5,2/3

Knowledge Check

  • If f={(1,4),(2,5),(3,6)} and g={(4,8),(5,7),(6,9)} , then gof is

    A
    `{phi}`
    B
    `{(1,8),(2,7),(3,9)}`
    C
    `{(1,7),(2,8),(3,9)}`
    D
    none of these
  • The value of 2(7)/8div(3""5/6div2/7"of " 2(1)/3)xx[(2""6/7" of " 4(1)/5div2/3)xx5/9] is

    A
    5
    B
    `1/4`
    C
    4
    D
    `1/23`
  • Sum the series (3)/(3!) + (4)/(5!) + (6)/(7!) + (8)/(9!) + ...

    A
    e
    B
    2e
    C
    `e^(-1)`
    D
    None
  • Similar Questions

    Explore conceptually related problems

    The order of the matrices [{:(1,2,3),(4,5,-1):}], [{:(2,4),(9,2),(6,3),(4,1):}] , [{:(4,5,6),(3,2,1),(9,8,7):}] respectively are :

    The sum of the series (5)/(1.2.3)+(7)/(3.4.5)+(9)/(5.6.7)+.... is equal to

    Find the sum in the nth group of sequence, (I 1,(2,3),(4,5,6,7),(8,9,………15),……………….. (ii) (1),(2,3,4),(5,6,7,8,9),…………..

    The expression (5 5/8)/(6 3/7) of (6 7/11)/(9 1/8)-:8/9(2 3/11+13/22) of 3/5 equals

    The sum of the series (5)/(1*2*3)+(7)/(3*4*5)+(9)/(5*6*7)+ . . . is