Home
Class 12
MATHS
If alpha, beta are the roots of the qua...

If `alpha, beta` are the roots of the quadratic equation `cx^2- 2bx + 4a = 0` then find the quadratic equation whose roots are:
(i) `alpha/2, beta/2`, (ii) `alpha^(2), beta^(2)`, (iii) `alpha + 1, beta+1`, (iv) `(1+alpha)/(1-alpha) (1+beta)/(1-beta)`, (v) `alpha/beta, beta/alpha`

Text Solution

AI Generated Solution

The correct Answer is:
To find the quadratic equations whose roots are derived from the roots \( \alpha \) and \( \beta \) of the quadratic equation \( cx^2 - 2bx + 4a = 0 \), we will use the relationships between the roots and coefficients of the quadratic equation. ### Given: The roots \( \alpha \) and \( \beta \) satisfy: 1. Sum of the roots: \( \alpha + \beta = \frac{2b}{c} \) 2. Product of the roots: \( \alpha \beta = \frac{4a}{c} \) ### (i) Roots: \( \frac{\alpha}{2}, \frac{\beta}{2} \) **Step 1:** Calculate the sum of the new roots: \[ \frac{\alpha}{2} + \frac{\beta}{2} = \frac{\alpha + \beta}{2} = \frac{2b}{2c} = \frac{b}{c} \] **Step 2:** Calculate the product of the new roots: \[ \frac{\alpha}{2} \cdot \frac{\beta}{2} = \frac{\alpha \beta}{4} = \frac{4a}{4c} = \frac{a}{c} \] **Step 3:** Form the quadratic equation: \[ x^2 - \left(\frac{b}{c}\right)x + \frac{a}{c} = 0 \] Multiplying through by \( c \): \[ cx^2 - bx + a = 0 \] ### (ii) Roots: \( \alpha^2, \beta^2 \) **Step 1:** Calculate the sum of the new roots: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \left(\frac{2b}{c}\right)^2 - 2\left(\frac{4a}{c}\right) = \frac{4b^2}{c^2} - \frac{8a}{c} \] **Step 2:** Calculate the product of the new roots: \[ \alpha^2 \beta^2 = (\alpha \beta)^2 = \left(\frac{4a}{c}\right)^2 = \frac{16a^2}{c^2} \] **Step 3:** Form the quadratic equation: \[ x^2 - \left(\frac{4b^2 - 8ac}{c^2}\right)x + \frac{16a^2}{c^2} = 0 \] Multiplying through by \( c^2 \): \[ c^2x^2 - (4b^2 - 8ac)x + 16a^2 = 0 \] ### (iii) Roots: \( \alpha + 1, \beta + 1 \) **Step 1:** Calculate the sum of the new roots: \[ (\alpha + 1) + (\beta + 1) = \alpha + \beta + 2 = \frac{2b}{c} + 2 = \frac{2b + 2c}{c} = \frac{2(b + c)}{c} \] **Step 2:** Calculate the product of the new roots: \[ (\alpha + 1)(\beta + 1) = \alpha\beta + \alpha + \beta + 1 = \frac{4a}{c} + \frac{2b}{c} + 1 = \frac{4a + 2b + c}{c} \] **Step 3:** Form the quadratic equation: \[ x^2 - \left(\frac{2(b + c)}{c}\right)x + \frac{4a + 2b + c}{c} = 0 \] Multiplying through by \( c \): \[ cx^2 - 2(b + c)x + (4a + 2b + c) = 0 \] ### (iv) Roots: \( \frac{1 + \alpha}{1 - \alpha}, \frac{1 + \beta}{1 - \beta} \) **Step 1:** Calculate the sum of the new roots: \[ \frac{1 + \alpha}{1 - \alpha} + \frac{1 + \beta}{1 - \beta} = \frac{(1 + \alpha)(1 - \beta) + (1 + \beta)(1 - \alpha)}{(1 - \alpha)(1 - \beta)} \] After simplifying, we find: \[ = \frac{2 + \alpha + \beta - (\alpha\beta + \alpha + \beta)}{1 - (\alpha + \beta) + \alpha\beta} = \frac{2 - \alpha\beta}{1 - \frac{2b}{c} + \frac{4a}{c}} = \frac{2 - \frac{4a}{c}}{\frac{c - 2b + 4a}{c}} = \frac{2c - 4a}{c - 2b + 4a} \] **Step 2:** Calculate the product of the new roots: \[ \frac{(1 + \alpha)(1 + \beta)}{(1 - \alpha)(1 - \beta)} = \frac{1 + \alpha + \beta + \alpha\beta}{1 - (\alpha + \beta) + \alpha\beta} = \frac{1 + \frac{2b}{c} + \frac{4a}{c}}{1 - \frac{2b}{c} + \frac{4a}{c}} = \frac{c + 2b + 4a}{c - 2b + 4a} \] **Step 3:** Form the quadratic equation: \[ x^2 - \left(\frac{2c - 4a}{c - 2b + 4a}\right)x + \frac{c + 2b + 4a}{c - 2b + 4a} = 0 \] Multiplying through by \( (c - 2b + 4a) \): \[ (c - 2b + 4a)x^2 - (2c - 4a)x + (c + 2b + 4a) = 0 \] ### (v) Roots: \( \frac{\alpha}{\beta}, \frac{\beta}{\alpha} \) **Step 1:** Calculate the sum of the new roots: \[ \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta} = \frac{\left(\frac{2b}{c}\right)^2 - 2\left(\frac{4a}{c}\right)}{\frac{4a}{c}} = \frac{\frac{4b^2}{c^2} - \frac{8a}{c}}{\frac{4a}{c}} = \frac{4b^2 - 8ac}{4ac} = \frac{b^2 - 2ac}{ac} \] **Step 2:** Calculate the product of the new roots: \[ \frac{\alpha}{\beta} \cdot \frac{\beta}{\alpha} = 1 \] **Step 3:** Form the quadratic equation: \[ x^2 - \left(\frac{b^2 - 2ac}{ac}\right)x + 1 = 0 \] Multiplying through by \( ac \): \[ acx^2 - (b^2 - 2ac)x + ac = 0 \] ### Summary of Quadratic Equations: 1. \( cx^2 - bx + a = 0 \) 2. \( c^2x^2 - (4b^2 - 8ac)x + 16a^2 = 0 \) 3. \( cx^2 - 2(b + c)x + (4a + 2b + c) = 0 \) 4. \( (c - 2b + 4a)x^2 - (2c - 4a)x + (c + 2b + 4a) = 0 \) 5. \( acx^2 - (b^2 - 2ac)x + ac = 0 \)
Promotional Banner

Topper's Solved these Questions

  • EQUATIONS

    RESONANCE|Exercise EXERCISE-1 (PART -1: PRE RMO) |44 Videos
  • EQUATIONS

    RESONANCE|Exercise EXERCISE-1 (PART -II: RMO) |15 Videos
  • EQUATIONS

    RESONANCE|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |7 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE|Exercise Exercise|138 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta is the root of the quadratic equation cx^(2)-2bx+4a=0, then find the quadratic equation of which roots are (i) (alpha)/(2),(beta)/(2) (ii) alpha^(2),beta^(2)( iii) alpha+1,beta+1

if alpha and beta are the roots of the quadratic equation x^(2)-3.x-2=0, find a quadratic equation whose roots are (1)/(2 alpha+beta) and (1)/(2 beta+alpha)

If alpha " & " beta are the roots of equation ax^(2) + bx + c = 0 then find the quadratic equation whose roots are alpha + 1 " & " beta + 1

If alpha " & " beta are the roots of equation ax^(2) + bx + c = 0 then find the Quadratic equation whose roots are (1)/(alpha) " & " (1)/(beta)

If alpha,beta are the roots of the quadratic equation 4x^(2)-4x+1=0 then alpha^(3)+beta^(3)=

If alpha, beta are the roots of ax^(2) + bx + c = 0 , then find the quadratic equation whose roots are alpha + beta, alpha beta .

If alpha and beta are the roots of the quation ax^(2)+bx+c=0 , then find the equation whose roots are given by (i) alpha+1/(beta), beta+1/(alpha) (ii) alpha^(2)+2,beta^(2)+2

RESONANCE-EQUATIONS -SELF PRACTICE PROBLEMS:
  1. If alpha, beta are the roots of the quadratic equation cx^2- 2bx + 4a...

    Text Solution

    |

  2. If r be the ratio of the roots of the equation ax^2 + bx + c = 0. show...

    Text Solution

    |

  3. For a,b,c and d are distnct numbers, if roots of the equation x^2-10cx...

    Text Solution

    |

  4. For what values of 'k' the expression (4 - k)x^2 + 2(k + 2)x + 8k +1 w...

    Text Solution

    |

  5. If (x - alpha) be a factor common to a(1)x^(2) + b(1)x +c and a2x^2 +...

    Text Solution

    |

  6. If 3x^(2) + 2alphaxy + 2y^(2) + 2ax - 4y+1 can be resolved into two li...

    Text Solution

    |

  7. Let 4x^2 - 4(alpha - 2)x + alpha - 2 = 0 (alpha in R) be a quadratic e...

    Text Solution

    |

  8. If f(x)=a x^2+b x+c ,g(x)=-a x^2+b x+c ,w h e r ea c!=0, then prove th...

    Text Solution

    |

  9. If ax^2 + 2bx + c = 0 and a1x^2 + 2b(1)x + c(1) = 0 have a common root...

    Text Solution

    |

  10. If 2p^3 - 9pq + 27r = 0 then prove that the roots of the equations rx^...

    Text Solution

    |

  11. If c gt 0 and ax^2 + 2bx + 3c = 0 does not have any real roots then p...

    Text Solution

    |

  12. If f(x) =(x-a) (x-b), then show that f(x) ge (-(a-b)^(2))/4

    Text Solution

    |

  13. Find the least integral value of 'k' for which the quadratic polynomia...

    Text Solution

    |

  14. Find the range of f(x)=(x^2+34 x-71)/(x^3+2x-7)

    Text Solution

    |

  15. Find the interval in which .'m' lies so that the expression (mx^(2) + ...

    Text Solution

    |

  16. Find the value of b for which difference between maximum and minimum v...

    Text Solution

    |

  17. Find all numbers a for each of which the least value of the quadratic ...

    Text Solution

    |

  18. Let x^2-2(a - 1)x + a - 1 = 0 (a in R) be a quadratic equation, then ...

    Text Solution

    |

  19. The value of k for which both the roots of the equation 4x^(2)-20kx+(2...

    Text Solution

    |

  20. Find the values of 'alpha' for which 6 lies between the roots of the e...

    Text Solution

    |