Home
Class 12
MATHS
If alpha, beta are the roots of the qua...

If `alpha, beta` are the roots of the quadratic equation `cx^2- 2bx + 4a = 0` then find the quadratic equation whose roots are:
(i) `alpha/2, beta/2`, (ii) `alpha^(2), beta^(2)`, (iii) `alpha + 1, beta+1`, (iv) `(1+alpha)/(1-alpha) (1+beta)/(1-beta)`, (v) `alpha/beta, beta/alpha`

Text Solution

AI Generated Solution

The correct Answer is:
To find the quadratic equations whose roots are derived from the roots \( \alpha \) and \( \beta \) of the quadratic equation \( cx^2 - 2bx + 4a = 0 \), we will use the relationships between the roots and coefficients of the quadratic equation. ### Given: The roots \( \alpha \) and \( \beta \) satisfy: 1. Sum of the roots: \( \alpha + \beta = \frac{2b}{c} \) 2. Product of the roots: \( \alpha \beta = \frac{4a}{c} \) ### (i) Roots: \( \frac{\alpha}{2}, \frac{\beta}{2} \) **Step 1:** Calculate the sum of the new roots: \[ \frac{\alpha}{2} + \frac{\beta}{2} = \frac{\alpha + \beta}{2} = \frac{2b}{2c} = \frac{b}{c} \] **Step 2:** Calculate the product of the new roots: \[ \frac{\alpha}{2} \cdot \frac{\beta}{2} = \frac{\alpha \beta}{4} = \frac{4a}{4c} = \frac{a}{c} \] **Step 3:** Form the quadratic equation: \[ x^2 - \left(\frac{b}{c}\right)x + \frac{a}{c} = 0 \] Multiplying through by \( c \): \[ cx^2 - bx + a = 0 \] ### (ii) Roots: \( \alpha^2, \beta^2 \) **Step 1:** Calculate the sum of the new roots: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \left(\frac{2b}{c}\right)^2 - 2\left(\frac{4a}{c}\right) = \frac{4b^2}{c^2} - \frac{8a}{c} \] **Step 2:** Calculate the product of the new roots: \[ \alpha^2 \beta^2 = (\alpha \beta)^2 = \left(\frac{4a}{c}\right)^2 = \frac{16a^2}{c^2} \] **Step 3:** Form the quadratic equation: \[ x^2 - \left(\frac{4b^2 - 8ac}{c^2}\right)x + \frac{16a^2}{c^2} = 0 \] Multiplying through by \( c^2 \): \[ c^2x^2 - (4b^2 - 8ac)x + 16a^2 = 0 \] ### (iii) Roots: \( \alpha + 1, \beta + 1 \) **Step 1:** Calculate the sum of the new roots: \[ (\alpha + 1) + (\beta + 1) = \alpha + \beta + 2 = \frac{2b}{c} + 2 = \frac{2b + 2c}{c} = \frac{2(b + c)}{c} \] **Step 2:** Calculate the product of the new roots: \[ (\alpha + 1)(\beta + 1) = \alpha\beta + \alpha + \beta + 1 = \frac{4a}{c} + \frac{2b}{c} + 1 = \frac{4a + 2b + c}{c} \] **Step 3:** Form the quadratic equation: \[ x^2 - \left(\frac{2(b + c)}{c}\right)x + \frac{4a + 2b + c}{c} = 0 \] Multiplying through by \( c \): \[ cx^2 - 2(b + c)x + (4a + 2b + c) = 0 \] ### (iv) Roots: \( \frac{1 + \alpha}{1 - \alpha}, \frac{1 + \beta}{1 - \beta} \) **Step 1:** Calculate the sum of the new roots: \[ \frac{1 + \alpha}{1 - \alpha} + \frac{1 + \beta}{1 - \beta} = \frac{(1 + \alpha)(1 - \beta) + (1 + \beta)(1 - \alpha)}{(1 - \alpha)(1 - \beta)} \] After simplifying, we find: \[ = \frac{2 + \alpha + \beta - (\alpha\beta + \alpha + \beta)}{1 - (\alpha + \beta) + \alpha\beta} = \frac{2 - \alpha\beta}{1 - \frac{2b}{c} + \frac{4a}{c}} = \frac{2 - \frac{4a}{c}}{\frac{c - 2b + 4a}{c}} = \frac{2c - 4a}{c - 2b + 4a} \] **Step 2:** Calculate the product of the new roots: \[ \frac{(1 + \alpha)(1 + \beta)}{(1 - \alpha)(1 - \beta)} = \frac{1 + \alpha + \beta + \alpha\beta}{1 - (\alpha + \beta) + \alpha\beta} = \frac{1 + \frac{2b}{c} + \frac{4a}{c}}{1 - \frac{2b}{c} + \frac{4a}{c}} = \frac{c + 2b + 4a}{c - 2b + 4a} \] **Step 3:** Form the quadratic equation: \[ x^2 - \left(\frac{2c - 4a}{c - 2b + 4a}\right)x + \frac{c + 2b + 4a}{c - 2b + 4a} = 0 \] Multiplying through by \( (c - 2b + 4a) \): \[ (c - 2b + 4a)x^2 - (2c - 4a)x + (c + 2b + 4a) = 0 \] ### (v) Roots: \( \frac{\alpha}{\beta}, \frac{\beta}{\alpha} \) **Step 1:** Calculate the sum of the new roots: \[ \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta} = \frac{\left(\frac{2b}{c}\right)^2 - 2\left(\frac{4a}{c}\right)}{\frac{4a}{c}} = \frac{\frac{4b^2}{c^2} - \frac{8a}{c}}{\frac{4a}{c}} = \frac{4b^2 - 8ac}{4ac} = \frac{b^2 - 2ac}{ac} \] **Step 2:** Calculate the product of the new roots: \[ \frac{\alpha}{\beta} \cdot \frac{\beta}{\alpha} = 1 \] **Step 3:** Form the quadratic equation: \[ x^2 - \left(\frac{b^2 - 2ac}{ac}\right)x + 1 = 0 \] Multiplying through by \( ac \): \[ acx^2 - (b^2 - 2ac)x + ac = 0 \] ### Summary of Quadratic Equations: 1. \( cx^2 - bx + a = 0 \) 2. \( c^2x^2 - (4b^2 - 8ac)x + 16a^2 = 0 \) 3. \( cx^2 - 2(b + c)x + (4a + 2b + c) = 0 \) 4. \( (c - 2b + 4a)x^2 - (2c - 4a)x + (c + 2b + 4a) = 0 \) 5. \( acx^2 - (b^2 - 2ac)x + ac = 0 \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • EQUATIONS

    RESONANCE|Exercise EXERCISE-1 (PART -1: PRE RMO) |44 Videos
  • EQUATIONS

    RESONANCE|Exercise EXERCISE-1 (PART -II: RMO) |15 Videos
  • EQUATIONS

    RESONANCE|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |7 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE|Exercise Exercise|138 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta is the root of the quadratic equation cx^(2)-2bx+4a=0, then find the quadratic equation of which roots are (i) (alpha)/(2),(beta)/(2) (ii) alpha^(2),beta^(2)( iii) alpha+1,beta+1

if alpha and beta are the roots of the quadratic equation x^(2)-3.x-2=0, find a quadratic equation whose roots are (1)/(2 alpha+beta) and (1)/(2 beta+alpha)

Knowledge Check

  • If alpha, beta are roots of the quadratic equation x^(2)-x-1=0 , then the quadratic equation whose roots are (1+alpha)/( 2-alpha), (1+beta)/(2-beta) is

    A
    `z^(2)+z+1=0`
    B
    `z^(2)-7z+1=0`
    C
    `z^(2)+7z+1=0`
    D
    `z^(2)+7z-1=0`
  • If alpha, beta are the roots of the quadratic equation x^(2)+ax +b=0, (b ne 0) , then the quadratic equation whose roots are alpha -(1)/(beta), beta-(1)/(alpha) is

    A
    `ax^(2)+a(b-1)x +(a-1)^(2)=0`
    B
    `bx^(2)+a(b-1)x+(b-1)^(2)=0`
    C
    `x^(2)+ax+b=0`
    D
    `abx^(2)+bx+a=0`
  • If alpha, beta are the roots of ax^(2) + bx + c = 0 , then find the quadratic equation whose roots are alpha + beta, alpha beta .

    A
    `ax^(2) + (ab-ac) x - c = 0`
    B
    `ax^(2) + (b-c) x - bc = 0`
    C
    `a^(2)x^(2) + (b-c) x - ac = 0`
    D
    `a^(2)x^(2) + (ab-ac) x - bc = 0`
  • Similar Questions

    Explore conceptually related problems

    If alpha " & " beta are the roots of equation ax^(2) + bx + c = 0 then find the quadratic equation whose roots are alpha + 1 " & " beta + 1

    If alpha " & " beta are the roots of equation ax^(2) + bx + c = 0 then find the Quadratic equation whose roots are (1)/(alpha) " & " (1)/(beta)

    If alpha,beta are the roots of the quadratic equation 4x^(2)-4x+1=0 then alpha^(3)+beta^(3)=

    If alpha and beta are the roots of the quation ax^(2)+bx+c=0 , then find the equation whose roots are given by (i) alpha+1/(beta), beta+1/(alpha) (ii) alpha^(2)+2,beta^(2)+2

    If alpha and beta are the roots of the equation ax ^(2) + bx + c =0, then the quadratic equation whose roots are (alpha)/(1 + alpha ) and (beta)/( 1 + beta) , is