Home
Class 11
MATHS
If x is a real number and |5-(x-3)|+8lt1...

If x is a real number and `|5-(x-3)|+8lt15`, then (i) `1 le x le 15` (ii) `1lt x lt 15` (iii) `1 lt x le 15` (iv) `1 le x le 15`

A

`l le x le 15`

B

`1lt x lt 15`

C

`1 lt x le 15`

D

`1 le x le 15`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( |5 - (x - 3)| + 8 < 15 \), we will follow these steps: ### Step 1: Simplify the Inequality Start with the given inequality: \[ |5 - (x - 3)| + 8 < 15 \] Subtract 8 from both sides: \[ |5 - (x - 3)| < 15 - 8 \] This simplifies to: \[ |5 - (x - 3)| < 7 \] ### Step 2: Rewrite the Absolute Value Now, we can rewrite the expression inside the absolute value: \[ |5 - (x - 3)| = |8 - x| \] So, the inequality becomes: \[ |8 - x| < 7 \] ### Step 3: Remove the Absolute Value The inequality \( |8 - x| < 7 \) implies two cases: 1. \( 8 - x < 7 \) 2. \( 8 - x > -7 \) ### Step 4: Solve the First Case For the first case: \[ 8 - x < 7 \] Subtract 8 from both sides: \[ -x < -1 \] Multiplying both sides by -1 (which reverses the inequality): \[ x > 1 \] ### Step 5: Solve the Second Case For the second case: \[ 8 - x > -7 \] Subtract 8 from both sides: \[ -x > -15 \] Multiplying both sides by -1 (which reverses the inequality): \[ x < 15 \] ### Step 6: Combine the Results From the two cases, we have: \[ 1 < x < 15 \] This can be written in interval notation as: \[ (1, 15) \] ### Conclusion Thus, the solution to the inequality is: \[ 1 < x < 15 \] This corresponds to option (ii) \( 1 < x < 15 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL TEST PAPER - 9

    ICSE|Exercise SECTION - B |10 Videos
  • MODEL TEST PAPER - 9

    ICSE|Exercise SECTION - C |9 Videos
  • MODEL TEST PAPER - 20

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER -11

    ICSE|Exercise Sections - C|10 Videos

Similar Questions

Explore conceptually related problems

-15 lt (3(x - 2))/(5) le 0

Solve 0 lt | x-3| le 5

Solve 15-2(2x-1) lt 15, x in Z

Minimum vlaue of |x-p| + |x-15| +|x-p-15|. If p le x le 15 and 0 lt p lt 15 :

Write the following as intervals : (i) {x : x in R, -4 lt x le 6} (ii) {x : x in R, -12 lt x lt -10} (iii) {x : x in R, 0 le x lt 7} (iv) {x : x in R, 3 le x le 4} .

If the replacement set is the set of natural numbers, solve : (i) x-5 lt 0 (ii) x+1 le 7 (iii) 3x-4 gt 6 (iv) 4x+1 ge 17

For 2 lt x lt 4 find the values of |x|. (ii) For -3 le x le -1 , find the values of |x|. (iii) For -3 le x lt 1, find the values of |x| (iv) For -5 lt x lt 7 find the values of |x-2| (v) For 1 le x le 5 find fthe values of |2x -7|

Use real number line to find the range of values of x for which : -1 lt x le 6 and -2 le x le 3 .

A function f is defined on the set of real numbers as follows: f(x)={(x+1, 1 le x lt 2),(2x-1, 2 le x lt 4), (3x-10, 4 le x lt 6):} (a) Find the domain of the function. (b) Find the range of the function.

x in {real numbers} and -1 lt 3 - 2x le 7 , evaluate x and represent it on a number line.