Home
Class 11
MATHS
Evaluate : lim(x to 0)(tanx-sinx)/(x^(3)...

Evaluate : `lim_(x to 0)(tanx-sinx)/(x^(3))`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\tan x - \sin x}{x^3}, \] we first notice that substituting \(x = 0\) gives us the indeterminate form \(\frac{0 - 0}{0^3} = \frac{0}{0}\). Therefore, we can apply L'Hôpital's Rule, which states that if we have an indeterminate form \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\), we can take the derivative of the numerator and the derivative of the denominator. ### Step 1: Apply L'Hôpital's Rule We differentiate the numerator and the denominator: - The derivative of \(\tan x\) is \(\sec^2 x\). - The derivative of \(\sin x\) is \(\cos x\). - The derivative of \(x^3\) is \(3x^2\). Thus, we have: \[ \lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = \lim_{x \to 0} \frac{\sec^2 x - \cos x}{3x^2}. \] ### Step 2: Substitute \(x = 0\) Again Now substituting \(x = 0\) gives us: \[ \sec^2(0) - \cos(0) = 1 - 1 = 0, \] and \(3(0^2) = 0\). We again have the form \(\frac{0}{0}\), so we apply L'Hôpital's Rule a second time. ### Step 3: Differentiate Again Differentiating again: - The derivative of \(\sec^2 x\) is \(2\sec^2 x \tan x\). - The derivative of \(\cos x\) is \(-\sin x\). - The derivative of \(3x^2\) is \(6x\). Now we have: \[ \lim_{x \to 0} \frac{2\sec^2 x \tan x + \sin x}{6x}. \] ### Step 4: Substitute \(x = 0\) Again Substituting \(x = 0\) gives us: \[ 2\sec^2(0) \tan(0) + \sin(0) = 2(1)(0) + 0 = 0, \] and \(6(0) = 0\). We still have the form \(\frac{0}{0}\), so we apply L'Hôpital's Rule once more. ### Step 5: Differentiate Again Differentiating again: - The derivative of \(2\sec^2 x \tan x\) involves the product rule: \[ 2(\sec^2 x \sec^2 x + 2\sec^2 x \tan^2 x) = 2\sec^4 x + 4\sec^2 x \tan^2 x. \] - The derivative of \(\sin x\) is \(\cos x\). - The derivative of \(6x\) is \(6\). Now we have: \[ \lim_{x \to 0} \frac{2\sec^4 x + 4\sec^2 x \tan^2 x + \cos x}{6}. \] ### Step 6: Substitute \(x = 0\) Again Substituting \(x = 0\) gives: \[ 2(1) + 4(1)(0) + 1 = 2 + 0 + 1 = 3. \] Thus, we have: \[ \lim_{x \to 0} \frac{3}{6} = \frac{1}{2}. \] ### Final Result Therefore, the limit is: \[ \lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = \frac{1}{2}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL TEST PAPER - 9

    ICSE|Exercise SECTION - B |10 Videos
  • MODEL TEST PAPER - 9

    ICSE|Exercise SECTION - C |9 Videos
  • MODEL TEST PAPER - 20

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER -11

    ICSE|Exercise Sections - C|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0)(tanx-sinx)/(x^(3)).

Evaluate: ("lim")_(xvec0)(tanx-sinx)/(x^3)

Using L'Hospital's rule, evaluate : lim_(x to 0) (x-sinx)/(x^(2)sinx) .

Evaluate lim_(xto0) (2sinx-sin2x)/(x^(3))

Evaluate : lim_(xto 0) (e^(sinx)-1)/x

Evaluate lim_(x to oo) (sinx^(0))/(x).

Evaluate lim_(x to 0) (sinx+log(1-x))/(x^(2)).

Evaluate lim_(xto0)|x|^(sinx)

Evaluate lim_(xto0) (tan2x-x)/(3x-sinx).

Evaluate lim_(x to 0) (sinx-2)/(cosx-1).