Home
Class 14
MATHS
The value of (2^(log(3)7)-7^(log3 2)) is...

The value of `(2^(log_(3)7)-7^(log_3 2))` is :

A

0

B

1

C

`log_(7)5`

D

`log_(7)6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(2^{\log_{3} 7} - 7^{\log_{3} 2}\), we can use the properties of logarithms. Here’s a step-by-step solution: ### Step 1: Identify the expression We start with the expression: \[ 2^{\log_{3} 7} - 7^{\log_{3} 2} \] ### Step 2: Apply the logarithmic identity We can use the property of logarithms that states: \[ a^{\log_{b} c} = c^{\log_{b} a} \] This means we can rewrite \(7^{\log_{3} 2}\) as \(2^{\log_{3} 7}\). ### Step 3: Rewrite the expression Using the property from Step 2, we rewrite the second term: \[ 2^{\log_{3} 7} - 7^{\log_{3} 2} = 2^{\log_{3} 7} - 2^{\log_{3} 7} \] ### Step 4: Simplify the expression Now we see that both terms are equal: \[ 2^{\log_{3} 7} - 2^{\log_{3} 7} = 0 \] ### Final Answer Thus, the value of the expression \(2^{\log_{3} 7} - 7^{\log_{3} 2}\) is: \[ \boxed{0} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

The value of (2^(log_(2^(1/4)) 2)-3^(log_27 125)-4)/((7^(4log_(49) 2))-3) is

Let x,y and z be positive real numbers such that x^(log_(2)7)=8,y^(log_(3)5)=81 and z^(log_(5)216)=(5)^((1)/(3)) The value of (x(log_(2)7)^(2))+(y^(log_(3)5)^^2)+z^((log_(5)16)^(2)), is

Knowledge Check

  • The value of (2^(log3^(7) - 7^(log _(3)2))) is

    A
    0
    B
    1
    C
    `log_(7)5`
    D
    `log_(7)6`
  • The value of 81^((1//log_(5)3))+27^(log_(9)36)+3^(4//log_(7)9) is equal to

    A
    `49`
    B
    `625`
    C
    `216`
    D
    `890`
  • The value of 81^(1//log_(5)3) + 27^(log_(9)36) + 3^(4//log_(7)9) is

    A
    49
    B
    625
    C
    216
    D
    890
  • Similar Questions

    Explore conceptually related problems

    if a,b,c are positive real numbers such that a^(log_(3)7)=27;b^(log711)=49 and c^(log_(11)25)=sqrt(11) then the value of {a^(log_(3)7)sim2+b^(log_(7)11)^^2+c^(log_(11)25)^^2} is

    The value of 81^((1)/(log_(5)(3)))+27^(log_(9)(36))+3^((4)/(log7)(9))

    If log_(y)x+log_(x)y=7, then the value of (log_(y)x)^(2)+(log_(x)y)^(2), is

    Find the value of log_(2) (1/(7^(log_(7) 0.125))) .

    Find the value of (7^(3))^(-2log_(7)8)