Home
Class 11
MATHS
Convert the products into sum or differe...

Convert the products into sum or difference.
`2 sin 48^(@) cos 12 ^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To convert the product \( 2 \sin 48^\circ \cos 12^\circ \) into a sum or difference, we can use the trigonometric identity: \[ 2 \sin x \cos y = \sin(x + y) + \sin(x - y) \] ### Step-by-step Solution: 1. **Identify the values of \( x \) and \( y \)**: - Here, \( x = 48^\circ \) and \( y = 12^\circ \). 2. **Apply the identity**: - Substitute \( x \) and \( y \) into the identity: \[ 2 \sin 48^\circ \cos 12^\circ = \sin(48^\circ + 12^\circ) + \sin(48^\circ - 12^\circ) \] 3. **Calculate the angles**: - Calculate \( 48^\circ + 12^\circ \): \[ 48^\circ + 12^\circ = 60^\circ \] - Calculate \( 48^\circ - 12^\circ \): \[ 48^\circ - 12^\circ = 36^\circ \] 4. **Write the final expression**: - Substitute the calculated angles back into the equation: \[ 2 \sin 48^\circ \cos 12^\circ = \sin 60^\circ + \sin 36^\circ \] ### Final Answer: \[ 2 \sin 48^\circ \cos 12^\circ = \sin 60^\circ + \sin 36^\circ \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (C ) |30 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (D) |60 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5(A)|49 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

Convert the products into sum or difference. If angles are given in degrees, evaluate from tables. sin ""(A +B)/(2) cos ""(A -B)/(2)

Convert the products into sum or difference. If angles are given in degrees, evaluate from tables. 2 cos 72^(@) sin 56^(@)

Convert the products into sum or difference. If angles are given in degrees, evaluate from tables. 2 sin 54 ^(@) sin 66^(@)

Convert the products into sum or difference. If angles are given in degrees, evaluate from tables. cos (alpha + beta) cos (alpha - beta)

Convert the products into sum or difference. If angles are given in degrees, evaluate from tables. 2 cos 5 theta cos 3 theta

Express in the products into sums or difference of sines and cosines : 2 sin 5theta. Cos 3theta

Convert the sums or differences into products: sin 37 ^(@) + sin 21 ^(@)

Convert the sums or differences into products: cos 79^(@) + cos 11 ^(@)

Express each of the products into sums or difference of sines and cosines : 2cos 9theta. Cos 4theta

Convert the sums or differences into products: sin 61^(@) - cos 39^(@)