Home
Class 11
MATHS
Solve : cos 3x + cos 2x = sin ""(3)/(2) ...

Solve :` cos 3x + cos 2x = sin ""(3)/(2) x + sin "" (1)/(2) x, 0 lt x le pi.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos(3x) + \cos(2x) = \sin\left(\frac{3}{2} x\right) + \sin\left(\frac{1}{2} x\right) \) for \( 0 < x \leq \pi \), we will follow these steps: ### Step 1: Rewrite the equation using trigonometric identities We can use the sum-to-product identities for both sides of the equation. The identities state: \[ \cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] \[ \sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] Applying these identities to our equation: - For the left side: \[ \cos(3x) + \cos(2x) = 2 \cos\left(\frac{3x + 2x}{2}\right) \cos\left(\frac{3x - 2x}{2}\right) = 2 \cos\left(\frac{5x}{2}\right) \cos\left(\frac{x}{2}\right) \] - For the right side: \[ \sin\left(\frac{3}{2} x\right) + \sin\left(\frac{1}{2} x\right) = 2 \sin\left(\frac{3x + x}{4}\right) \cos\left(\frac{3x - x}{4}\right) = 2 \sin\left(\frac{2x}{2}\right) \cos\left(\frac{x}{2}\right) = 2 \sin(x) \cos\left(\frac{x}{2}\right) \] ### Step 2: Set the two sides equal Now we have: \[ 2 \cos\left(\frac{5x}{2}\right) \cos\left(\frac{x}{2}\right) = 2 \sin(x) \cos\left(\frac{x}{2}\right) \] ### Step 3: Divide both sides by \( 2 \cos\left(\frac{x}{2}\right) \) Assuming \( \cos\left(\frac{x}{2}\right) \neq 0 \), we can divide both sides by \( 2 \cos\left(\frac{x}{2}\right) \): \[ \cos\left(\frac{5x}{2}\right) = \sin(x) \] ### Step 4: Use the identity \( \sin(x) = \cos\left(\frac{\pi}{2} - x\right) \) This gives us: \[ \cos\left(\frac{5x}{2}\right) = \cos\left(\frac{\pi}{2} - x\right) \] ### Step 5: Set up the equations From the property of cosine, we have two cases: 1. \( \frac{5x}{2} = \frac{\pi}{2} - x + 2n\pi \) 2. \( \frac{5x}{2} = -\left(\frac{\pi}{2} - x\right) + 2n\pi \) ### Step 6: Solve the first case For the first case: \[ \frac{5x}{2} + x = \frac{\pi}{2} + 2n\pi \] \[ \frac{7x}{2} = \frac{\pi}{2} + 2n\pi \] \[ x = \frac{\pi + 4n\pi}{7} \] ### Step 7: Solve the second case For the second case: \[ \frac{5x}{2} + \frac{\pi}{2} - x = 2n\pi \] \[ \frac{3x}{2} + \frac{\pi}{2} = 2n\pi \] \[ \frac{3x}{2} = 2n\pi - \frac{\pi}{2} \] \[ x = \frac{4n\pi - \pi}{3} = \frac{(4n - 1)\pi}{3} \] ### Step 8: Determine valid solutions for \( n \) Now we need to find valid values of \( n \) such that \( 0 < x \leq \pi \). 1. From \( x = \frac{\pi + 4n\pi}{7} \): - For \( n = 0 \): \( x = \frac{\pi}{7} \) - For \( n = 1 \): \( x = \frac{5\pi}{7} \) - For \( n = 2 \): \( x = \frac{9\pi}{7} \) (not valid) 2. From \( x = \frac{(4n - 1)\pi}{3} \): - For \( n = 1 \): \( x = \frac{3\pi}{3} = \pi \) - For \( n = 2 \): \( x = \frac{7\pi}{3} \) (not valid) ### Final Solutions The valid solutions are: \[ x = \frac{\pi}{7}, \quad x = \frac{5\pi}{7}, \quad x = \pi \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise EXERCISE 6|33 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos
  • TRIGONOMETRIC FUNCTION

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |44 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Chapter test |8 Videos

Similar Questions

Explore conceptually related problems

Solve 2 sin^(3) x=cos x .

Solve sin 3x = - (1)/(sqrt2) , 0 lt x lt 2pi.

Solve : cos 3x. Cos^(3)x+sin 3x.sin^(3)x=0

The solution of the equation "cos"^(2) x-2 "cos" x = 4 "sin" x - "sin" 2x (0 le x le pi) , is

Solve : cos ^(-1) x + sin ^(-1) "" (x)/( 2) = (pi)/(6)

Solve cos 2x=|sin x|, x in (-pi/2, pi) .

Solve cos 2x=|sin x|, x in (-pi/2, pi) .

Solve for x , sin x = ( -sqrt3)/(2), (0 lt x lt 2pi).

Solve sin 3x = cos 2x. (0 lt x lt 2pi).

Solve the equation ( sin x + cos x )^(1+ sin 2x )=2 , when -pi le x le pi .