Home
Class 11
MATHS
If alpha,beta are the roots of the equat...

If `alpha,beta` are the roots of the equation `x^(2)-2x-1=0`, then what is the value of `alpha^(2)beta^(-2)+alpha^(-2)beta^(2)` ?

A

`-2`

B

0

C

30

D

34

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha^2 \beta^{-2} + \alpha^{-2} \beta^2 \) given that \( \alpha \) and \( \beta \) are the roots of the equation \( x^2 - 2x - 1 = 0 \). ### Step 1: Find the roots \( \alpha \) and \( \beta \) We start with the quadratic equation: \[ x^2 - 2x - 1 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1, b = -2, c = -1 \): \[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ x = \frac{2 \pm \sqrt{4 + 4}}{2} \] \[ x = \frac{2 \pm \sqrt{8}}{2} \] \[ x = \frac{2 \pm 2\sqrt{2}}{2} \] \[ x = 1 \pm \sqrt{2} \] Thus, the roots are: \[ \alpha = 1 + \sqrt{2}, \quad \beta = 1 - \sqrt{2} \] ### Step 2: Calculate \( \alpha^2 + \beta^2 \) Using the identity: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \] We know: \[ \alpha + \beta = 2 \quad \text{(sum of roots)} \] \[ \alpha \beta = -1 \quad \text{(product of roots)} \] Now substituting these values: \[ \alpha^2 + \beta^2 = (2)^2 - 2(-1) = 4 + 2 = 6 \] ### Step 3: Calculate \( \alpha^4 + \beta^4 \) Using the identity: \[ \alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha^2 \beta^2) \] We already found \( \alpha^2 + \beta^2 = 6 \) and \( \alpha^2 \beta^2 = (\alpha \beta)^2 = (-1)^2 = 1 \): \[ \alpha^4 + \beta^4 = 6^2 - 2(1) = 36 - 2 = 34 \] ### Step 4: Calculate \( \alpha^2 \beta^{-2} + \alpha^{-2} \beta^2 \) We can rewrite the expression: \[ \alpha^2 \beta^{-2} + \alpha^{-2} \beta^2 = \frac{\alpha^4 + \beta^4}{\alpha^2 \beta^2} \] Substituting the known values: \[ \alpha^2 \beta^2 = 1 \quad \text{and} \quad \alpha^4 + \beta^4 = 34 \] Thus: \[ \alpha^2 \beta^{-2} + \alpha^{-2} \beta^2 = \frac{34}{1} = 34 \] ### Final Answer The value of \( \alpha^2 \beta^{-2} + \alpha^{-2} \beta^2 \) is \( \boxed{34} \).
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    ICSE|Exercise EXERCISE 10 (f)|9 Videos
  • PROPERTIES OF TRIANGLE

    ICSE|Exercise EXERCISE 7|38 Videos
  • RELATION AND FUNCTIONS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS (Choose the correct answer from the given four options in questions)|32 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the equations x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+beta^(2)alpha^(-2)

If alpha,beta be the roots of the equation x^(2)-x-1=0 , determine the value of i) alpha^(2)+beta^(2) and (ii) alpha^(3)+beta^(3) .

If alpha,beta are the roots of the equation x^(2)+x+1=0 , find the value of alpha^(3)-beta^(3) .

If alpha and beta are roots of the equation px^(2)+qx+1=0 , then the value of alpha^(3)beta^(2)+alpha^(2)beta^(3) is

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

If alpha,beta are the roots of the equation x^2-4x+1=0, then Find the value of: 1- alpha^2+beta^2 , 2- alpha^3+beta^3 , 3- |alpha-beta| , 4- 1/alpha+1/beta

If alpha,beta are the roots of the equation 8x^2-3x+27=0, then the value of (alpha^2/beta)^(1/3)+(beta^2/alpha)^(1/3) is

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha, beta are the roots of the equation ax^2 + bx +c=0 then the value of (1+alpha+alpha^2)(1+beta+beta^2) is

If alpha, beta are the roots of the equation x^(2)-7x+1=0 then value of {(1)/((alpha-7)^(2))+(1)/(beta-7)^(2))} - {((alpha^(2)+1)/(beta^(2)+1))+((beta^(2)+1)/(alpha^(2)+1))} is

ICSE-QUADRATIC EQUATIONS-CHAPTER TEST
  1. For what values of m will the equation x^(2)-2mx+7m-12=0 have (i) equa...

    Text Solution

    |

  2. If one root of 2x^(2)-5x+k=0 be double the other, find the value of k.

    Text Solution

    |

  3. If alpha,beta be the roots of the equation x^(2)-x-1=0, determine the ...

    Text Solution

    |

  4. If the roots of the equation ax^(2)+bx+c=0 be in the ratio 3:4, show t...

    Text Solution

    |

  5. If x is real, prove that the quadratic expression (i) (x-2)(x+3)+7 is ...

    Text Solution

    |

  6. Draw the graph of the quadratic function x^(2)-4x+3 and hence find the...

    Text Solution

    |

  7. For what real values of a, will the expression x^(2)-ax+1-2a^(2), for ...

    Text Solution

    |

  8. If x be real, prove that the value of (2x^(2)-2x+4)/(x^(2)-4x+3) canno...

    Text Solution

    |

  9. If the roots of the equation qx^(2)+2px+2q=0 are real and unequal, pro...

    Text Solution

    |

  10. If alpha,beta be the roots of x^(2)-px+q=0, find the value of alpha^(5...

    Text Solution

    |

  11. If the difference between the roots of the equation x^(2)+ax+1=0 is le...

    Text Solution

    |

  12. Let alpha,beta be the roots of the equation x^(2)-px+r=0 and alpha//2,...

    Text Solution

    |

  13. alpha,beta are the roots of ax^(2)+2bx+c=0 and alpha+delta,beta+delta ...

    Text Solution

    |

  14. If alpha,beta are the roots of the equation x^(2)-2x-1=0, then what is...

    Text Solution

    |

  15. If the roots of the quadratic equation x^(2)+px+q=0 are tan 30^(@) and...

    Text Solution

    |

  16. If both the roots of the quadratic equation x^(2)-2kx+k^(2)+k-5=0 are ...

    Text Solution

    |

  17. If alpha and beta are the roots of ax^(2)+bx+c=0 and if px^(2)+qx+r=0...

    Text Solution

    |

  18. The quadratic equations x^(2)-6x+a=0 and x^(2)-cx+6=0 have one root in...

    Text Solution

    |

  19. If alpha,beta are the roots of the equation lamda(x^(2)-x)+x+5=0 and i...

    Text Solution

    |

  20. If alpha,beta be the roots of x^(2)-a(x-1)+b=0, then the value of (1)/...

    Text Solution

    |