Home
Class 11
MATHS
If alpha,beta are the roots of the equat...

If `alpha,beta` are the roots of the equation `x^(2)-2x-1=0`, then what is the value of `alpha^(2)beta^(-2)+alpha^(-2)beta^(2)` ?

A

`-2`

B

0

C

30

D

34

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha^2 \beta^{-2} + \alpha^{-2} \beta^2 \) given that \( \alpha \) and \( \beta \) are the roots of the equation \( x^2 - 2x - 1 = 0 \). ### Step 1: Find the roots \( \alpha \) and \( \beta \) We start with the quadratic equation: \[ x^2 - 2x - 1 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1, b = -2, c = -1 \): \[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ x = \frac{2 \pm \sqrt{4 + 4}}{2} \] \[ x = \frac{2 \pm \sqrt{8}}{2} \] \[ x = \frac{2 \pm 2\sqrt{2}}{2} \] \[ x = 1 \pm \sqrt{2} \] Thus, the roots are: \[ \alpha = 1 + \sqrt{2}, \quad \beta = 1 - \sqrt{2} \] ### Step 2: Calculate \( \alpha^2 + \beta^2 \) Using the identity: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \] We know: \[ \alpha + \beta = 2 \quad \text{(sum of roots)} \] \[ \alpha \beta = -1 \quad \text{(product of roots)} \] Now substituting these values: \[ \alpha^2 + \beta^2 = (2)^2 - 2(-1) = 4 + 2 = 6 \] ### Step 3: Calculate \( \alpha^4 + \beta^4 \) Using the identity: \[ \alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha^2 \beta^2) \] We already found \( \alpha^2 + \beta^2 = 6 \) and \( \alpha^2 \beta^2 = (\alpha \beta)^2 = (-1)^2 = 1 \): \[ \alpha^4 + \beta^4 = 6^2 - 2(1) = 36 - 2 = 34 \] ### Step 4: Calculate \( \alpha^2 \beta^{-2} + \alpha^{-2} \beta^2 \) We can rewrite the expression: \[ \alpha^2 \beta^{-2} + \alpha^{-2} \beta^2 = \frac{\alpha^4 + \beta^4}{\alpha^2 \beta^2} \] Substituting the known values: \[ \alpha^2 \beta^2 = 1 \quad \text{and} \quad \alpha^4 + \beta^4 = 34 \] Thus: \[ \alpha^2 \beta^{-2} + \alpha^{-2} \beta^2 = \frac{34}{1} = 34 \] ### Final Answer The value of \( \alpha^2 \beta^{-2} + \alpha^{-2} \beta^2 \) is \( \boxed{34} \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    ICSE|Exercise EXERCISE 10 (f)|9 Videos
  • PROPERTIES OF TRIANGLE

    ICSE|Exercise EXERCISE 7|38 Videos
  • RELATION AND FUNCTIONS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS (Choose the correct answer from the given four options in questions)|32 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta be the roots of the equation x^(2)-x-1=0 , determine the value of i) alpha^(2)+beta^(2) and (ii) alpha^(3)+beta^(3) .

If alpha,beta are the roots of the equation x^(2)+x+1=0 , find the value of alpha^(3)-beta^(3) .

Knowledge Check

  • If alpha and beta are the roots of the equations x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+beta^(2)alpha^(-2)

    A
    `-2`
    B
    0
    C
    30
    D
    34
  • If alpha and beta are roots of the equation px^(2)+qx+1=0 , then the value of alpha^(3)beta^(2)+alpha^(2)beta^(3) is

    A
    `(q)/(p^(3))`
    B
    `-(q)/(p^(3))`
    C
    `(p)/(q^(3))`
    D
    `-(p)/(q^(3))`
  • If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

    A
    `-(3)/(5)`
    B
    `(3)/(5)`
    C
    `(5)/(3)`
    D
    `-(5)/(3)`
  • Similar Questions

    Explore conceptually related problems

    If alpha,beta are the roots of the equation x^2-4x+1=0, then Find the value of: 1- alpha^2+beta^2 , 2- alpha^3+beta^3 , 3- |alpha-beta| , 4- 1/alpha+1/beta

    If alpha,beta are the roots of the equation 8x^2-3x+27=0, then the value of (alpha^2/beta)^(1/3)+(beta^2/alpha)^(1/3) is

    If alpha, beta are the roots of the equation ax^2 + bx +c=0 then the value of (1+alpha+alpha^2)(1+beta+beta^2) is

    If alpha, beta are the roots of the equation x^(2)-7x+1=0 then value of {(1)/((alpha-7)^(2))+(1)/(beta-7)^(2))} - {((alpha^(2)+1)/(beta^(2)+1))+((beta^(2)+1)/(alpha^(2)+1))} is

    If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is