Home
Class 11
MATHS
Expand ((2)/( x) - (x)/(2))^(5), x ne 0....

Expand `((2)/( x) - (x)/(2))^(5), x ne 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \(\left(\frac{2}{x} - \frac{x}{2}\right)^{5}\) using the Binomial Theorem, we follow these steps: ### Step 1: Identify the terms in the binomial expression The expression can be rewritten as: \[ a = \frac{2}{x}, \quad b = -\frac{x}{2} \] We will use the Binomial Theorem which states: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] In our case, \(n = 5\). ### Step 2: Apply the Binomial Theorem Using the Binomial Theorem: \[ \left(\frac{2}{x} - \frac{x}{2}\right)^{5} = \sum_{k=0}^{5} \binom{5}{k} \left(\frac{2}{x}\right)^{5-k} \left(-\frac{x}{2}\right)^{k} \] ### Step 3: Calculate each term in the expansion Now we will calculate each term for \(k = 0\) to \(k = 5\): - **For \(k = 0\)**: \[ \binom{5}{0} \left(\frac{2}{x}\right)^{5} \left(-\frac{x}{2}\right)^{0} = 1 \cdot \frac{32}{x^5} \cdot 1 = \frac{32}{x^5} \] - **For \(k = 1\)**: \[ \binom{5}{1} \left(\frac{2}{x}\right)^{4} \left(-\frac{x}{2}\right)^{1} = 5 \cdot \frac{16}{x^4} \cdot \left(-\frac{x}{2}\right) = -\frac{80}{x^3} \] - **For \(k = 2\)**: \[ \binom{5}{2} \left(\frac{2}{x}\right)^{3} \left(-\frac{x}{2}\right)^{2} = 10 \cdot \frac{8}{x^3} \cdot \frac{x^2}{4} = \frac{80}{x} \] - **For \(k = 3\)**: \[ \binom{5}{3} \left(\frac{2}{x}\right)^{2} \left(-\frac{x}{2}\right)^{3} = 10 \cdot \frac{4}{x^2} \cdot \left(-\frac{x^3}{8}\right) = -\frac{40x}{2} = -20x \] - **For \(k = 4\)**: \[ \binom{5}{4} \left(\frac{2}{x}\right)^{1} \left(-\frac{x}{2}\right)^{4} = 5 \cdot \frac{2}{x} \cdot \frac{x^4}{16} = \frac{10x^3}{16} = \frac{5x^3}{8} \] - **For \(k = 5\)**: \[ \binom{5}{5} \left(\frac{2}{x}\right)^{0} \left(-\frac{x}{2}\right)^{5} = 1 \cdot 1 \cdot \left(-\frac{x^5}{32}\right) = -\frac{x^5}{32} \] ### Step 4: Combine all the terms Now, we combine all the terms: \[ \frac{32}{x^5} - \frac{80}{x^3} + \frac{80}{x} - 20x + \frac{5x^3}{8} - \frac{x^5}{32} \] ### Final Answer Thus, the expansion of \(\left(\frac{2}{x} - \frac{x}{2}\right)^{5}\) is: \[ \frac{32}{x^5} - \frac{80}{x^3} + \frac{80}{x} - 20x + \frac{5x^3}{8} - \frac{x^5}{32} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM

    ICSE|Exercise EXERCISE 13 (b)|33 Videos
  • BASIC CONCEPTS OF POINTS AND THEIR COORDINATES

    ICSE|Exercise CHAPTER TEST|2 Videos
  • CIRCLE

    ICSE|Exercise CHAPTER TEST |11 Videos

Similar Questions

Explore conceptually related problems

Write out the expansions of the following: (f) ((2)/(x) - (x)/(2) )^(5) , x ne 0

Expand: (2x-(1)/(x)) (3x+(2)/(x))

Expand: (x-(1)/(x)+5)^(2)

Solve the following equation: (1)/(x) - (1)/(x-2) 3, x ne 0, 2

Expand |(2, 5), (4x , 7x)|

Expand (i) ((2x)/3-(3)/(2x))^(6) , (ii) (2/x-x/2)^(5)

Expand |(2,0), (3x , 6)|

Expand |(2,2x),(6,x)|

Expand (3x^2- x/2)^5

Solve the equation for x : "sin"^(-1)(5)/(x)+"sin"^(-1)(12)/(x)=(pi)/(2), x ne 0 .