Home
Class 11
MATHS
Using binomial theorem, the value of (0....

Using binomial theorem, the value of `(0.999)^3` correct to 3 decimal places is

A

(a) `0.999`

B

(b) `0.998`

C

(c) `0.997`

D

(d) `0.995`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( (0.999)^3 \) using the Binomial Theorem, we can express \( 0.999 \) as \( 1 - 0.001 \). Thus, we can rewrite the expression as: \[ (0.999)^3 = (1 - 0.001)^3 \] According to the Binomial Theorem, we can expand \( (a - b)^n \) as follows: \[ (a - b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} (-b)^k \] In our case, \( a = 1 \), \( b = 0.001 \), and \( n = 3 \). Therefore, we can expand \( (1 - 0.001)^3 \): \[ (1 - 0.001)^3 = \sum_{k=0}^{3} \binom{3}{k} (1)^{3-k} (-0.001)^k \] Now, we calculate each term in the expansion: 1. For \( k = 0 \): \[ \binom{3}{0} (1)^{3} (-0.001)^0 = 1 \cdot 1 \cdot 1 = 1 \] 2. For \( k = 1 \): \[ \binom{3}{1} (1)^{2} (-0.001)^1 = 3 \cdot 1 \cdot (-0.001) = -0.003 \] 3. For \( k = 2 \): \[ \binom{3}{2} (1)^{1} (-0.001)^2 = 3 \cdot 1 \cdot 0.000001 = 0.000003 \] 4. For \( k = 3 \): \[ \binom{3}{3} (1)^{0} (-0.001)^3 = 1 \cdot 1 \cdot (-0.000000001) = -0.000000001 \] Now, we combine all the terms: \[ (1 - 0.001)^3 = 1 - 0.003 + 0.000003 - 0.000000001 \] Calculating this step by step: - Start with \( 1 \) - Subtract \( 0.003 \): \[ 1 - 0.003 = 0.997 \] - Add \( 0.000003 \): \[ 0.997 + 0.000003 = 0.997003 \] - Subtract \( 0.000000001 \): \[ 0.997003 - 0.000000001 \approx 0.997003 \] Now, rounding \( 0.997003 \) to three decimal places gives us: \[ 0.997 \] Thus, the value of \( (0.999)^3 \) correct to three decimal places is: \[ \boxed{0.997} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM

    ICSE|Exercise EXERCISE 13 (b)|33 Videos
  • BASIC CONCEPTS OF POINTS AND THEIR COORDINATES

    ICSE|Exercise CHAPTER TEST|2 Videos
  • CIRCLE

    ICSE|Exercise CHAPTER TEST |11 Videos

Similar Questions

Explore conceptually related problems

Using binomial theorem, evaluate : (999)^(3) .

Using binomial theorem, evaluate : (102)^5

Using binomial theorem, evaluate : (101)^4

Using binomial theorem, evaluate : (96)^3

Using binomial theorem, evaluate : (99)^5

Using the binomial theorem, evaluate (102)^5 .

Round off : 0.845 correct to 2 decimal places

The approximate value of (7.995)^(1//3) correct to four decimal places , is

Find the value of the sqrt199 correct to 4 decimal places

Find the value of (627)^(1//4) correct to 4 decimals places