Home
Class 14
MATHS
(sin(270^(@)+theta).cos(360^(@)+theta).t...

`(sin(270^(@)+theta).cos(360^(@)+theta).tan(180^(@)+theta))/(cos(180^(@)+theta).sin(270^(@)-theta).cot(270^(@)+theta))=?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{\sin(270^\circ + \theta) \cdot \cos(360^\circ + \theta) \cdot \tan(180^\circ + \theta)}{\cos(180^\circ + \theta) \cdot \sin(270^\circ - \theta) \cdot \cot(270^\circ + \theta)} \] we will simplify each trigonometric function step by step. ### Step 1: Simplify \(\sin(270^\circ + \theta)\) Using the sine addition formula, we have: \[ \sin(270^\circ + \theta) = \sin 270^\circ \cos \theta + \cos 270^\circ \sin \theta \] Since \(\sin 270^\circ = -1\) and \(\cos 270^\circ = 0\), we get: \[ \sin(270^\circ + \theta) = -1 \cdot \cos \theta + 0 \cdot \sin \theta = -\cos \theta \] ### Step 2: Simplify \(\cos(360^\circ + \theta)\) Using the cosine periodicity, we have: \[ \cos(360^\circ + \theta) = \cos \theta \] ### Step 3: Simplify \(\tan(180^\circ + \theta)\) Using the tangent addition formula, we have: \[ \tan(180^\circ + \theta) = \tan \theta \] ### Step 4: Substitute into the numerator Now substituting these values into the numerator: \[ \sin(270^\circ + \theta) \cdot \cos(360^\circ + \theta) \cdot \tan(180^\circ + \theta) = (-\cos \theta) \cdot (\cos \theta) \cdot (\tan \theta) = -\cos^2 \theta \tan \theta \] ### Step 5: Simplify \(\cos(180^\circ + \theta)\) Using the cosine addition formula, we have: \[ \cos(180^\circ + \theta) = -\cos \theta \] ### Step 6: Simplify \(\sin(270^\circ - \theta)\) Using the sine subtraction formula, we have: \[ \sin(270^\circ - \theta) = \sin 270^\circ \cos \theta - \cos 270^\circ \sin \theta = -\cos \theta \] ### Step 7: Simplify \(\cot(270^\circ + \theta)\) Using the cotangent addition formula, we have: \[ \cot(270^\circ + \theta) = \frac{1}{\tan(270^\circ + \theta)} = \frac{1}{-\tan \theta} = -\cot \theta \] ### Step 8: Substitute into the denominator Now substituting these values into the denominator: \[ \cos(180^\circ + \theta) \cdot \sin(270^\circ - \theta) \cdot \cot(270^\circ + \theta) = (-\cos \theta) \cdot (-\cos \theta) \cdot (-\cot \theta) = -\cos^2 \theta \cot \theta \] ### Step 9: Combine the numerator and denominator Now we can combine the results: \[ \frac{-\cos^2 \theta \tan \theta}{-\cos^2 \theta \cot \theta} \] ### Step 10: Simplify the expression This simplifies to: \[ \frac{\tan \theta}{\cot \theta} = \tan^2 \theta \] ### Final Answer Thus, the final answer is: \[ \tan^2 \theta \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

Simplify (sin(180^(@)+theta)cos(360^(@)-theta)tan(270^(@)-theta))/(sec^(2)(90^(@)+theta)tan(-theta)sin(270^(@)+theta))

(COS(90^(@)+theta)sec(270^(@)+theta)sin(180^(@)+theta))/(cos ec(-theta)cos(270^(@)-theta)tan(180^(@)+theta))

Knowledge Check

  • Prove that: (sin(180^(@)+theta)cos(90^(@)+theta)tan(270^(@)-theta)cot(360^(@)-theta))/(sin(360^(@)-theta)cos(360^(@)+theta)cos ec(-theta)sin(270^(@)+theta))=1

    A
    0
    B
    1
    C
    -1
    D
    None of these
  • The value of (sin(180^(@)+theta)cos(90^(@)+theta)tan(270^(@)-theta)cot(360^(@)-theta))/(sin(360^(@)-theta)cos(360^(@)+theta)cosec(-theta)sin(270^(@)+theta))

    A
    1
    B
    2
    C
    3
    D
    4
  • The value of (cos(90^(@)theta)sec(270^(@)+theta)sin(180^(@)+theta))/(cosec(-theta)cos(270^(@)-theta)tan(180^(@)+theta)) is

    A
    `cos theta`
    B
    `sin theta`
    C
    `tan theta`
    D
    `cot theta`
  • Similar Questions

    Explore conceptually related problems

    Prove that (cos(90^(@)+theta)sec(-theta)tan(180^(@)-theta))/(sec(360^(@)-theta)sin(180^(@)+theta)cot(90^(@)-theta))=-1

    Prove that (cos(90^(0)+theta)sec(-theta)tan(180^(@)-theta))/(sec(360^(@)-theta)sin(180^(@)+theta)cot(90^(@)-theta))=-1

    Prove that: (cos ec(90^(@)+theta)+cot(450^(@)+theta))/(cos ec(90^(@)-theta)+tan(180^(@)-theta))+(tan(180^(@)+theta)+sec(180^(@)-theta))/(tan(360^(@)+theta)-sec(-theta))=2

    Let (sin(180^(@)+theta)cos(270^(@)-theta)cot(theta-360^(@)))/(cos(theta-90^(@))sin(360^(@)-theta)tan(270^(@)+theta))=sqrt(a)(sin^(90^(@)-theta)+sin^(2)(90^(@)+theta)-1)/(1-cos^(2)(270^(@)-theta)-cos^(2)(270^(@)+theta))=b^(2) then determine the value of a+b, if (a+b) is a prime number

    Simplify the following: (i) "sin"(90^(@)+theta)"tan"(270^(@)+theta)cot(90^(@)+theta) cosec(270^(@)+theta) (ii) ("sin"(-theta)"tan"(180^(@)+theta)"tan"(90^(@)+theta))/(cot(90^(@)-theta)cos(360^(@)-theta)"sin"(180^(@)-theta))