Home
Class 14
MATHS
Find max^(m)&min^(m) value of cos^(2)the...

Find `max^(m)&min^(m)` value of `cos^(2)theta+sintheta`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum and minimum values of the function \( f(\theta) = \cos^2 \theta + \sin \theta \), we can follow these steps: ### Step 1: Rewrite the function We start by rewriting \( \cos^2 \theta \) in terms of \( \sin \theta \): \[ f(\theta) = \cos^2 \theta + \sin \theta = 1 - \sin^2 \theta + \sin \theta \] This simplifies to: \[ f(\theta) = 1 - \sin^2 \theta + \sin \theta \] Thus, we can express it as: \[ f(\theta) = -\sin^2 \theta + \sin \theta + 1 \] ### Step 2: Completing the square Next, we will complete the square for the quadratic expression in \( \sin \theta \): \[ f(\theta) = -(\sin^2 \theta - \sin \theta) + 1 \] To complete the square, we take the coefficient of \( \sin \theta \) (which is -1), halve it, and square it: \[ \left(\frac{-1}{2}\right)^2 = \frac{1}{4} \] Now, we can rewrite the expression: \[ f(\theta) = -\left(\sin^2 \theta - \sin \theta + \frac{1}{4} - \frac{1}{4}\right) + 1 \] This simplifies to: \[ f(\theta) = -\left(\left(\sin \theta - \frac{1}{2}\right)^2 - \frac{1}{4}\right) + 1 \] \[ f(\theta) = -\left(\sin \theta - \frac{1}{2}\right)^2 + \frac{1}{4} + 1 \] \[ f(\theta) = -\left(\sin \theta - \frac{1}{2}\right)^2 + \frac{5}{4} \] ### Step 3: Finding maximum and minimum values Now we analyze the expression: \[ f(\theta) = -\left(\sin \theta - \frac{1}{2}\right)^2 + \frac{5}{4} \] The term \(-\left(\sin \theta - \frac{1}{2}\right)^2\) reaches its maximum value of 0 when \(\sin \theta = \frac{1}{2}\). Thus, the maximum value of \( f(\theta) \) is: \[ f_{\text{max}} = 0 + \frac{5}{4} = \frac{5}{4} \] For the minimum value, \(-\left(\sin \theta - \frac{1}{2}\right)^2\) reaches its minimum when \(\sin \theta\) is at its extreme values, either -1 or 1. Let's evaluate both cases: 1. When \(\sin \theta = -1\): \[ f(-1) = -\left(-1 - \frac{1}{2}\right)^2 + \frac{5}{4} = -\left(-\frac{3}{2}\right)^2 + \frac{5}{4} = -\frac{9}{4} + \frac{5}{4} = -1 \] 2. When \(\sin \theta = 1\): \[ f(1) = -\left(1 - \frac{1}{2}\right)^2 + \frac{5}{4} = -\left(\frac{1}{2}\right)^2 + \frac{5}{4} = -\frac{1}{4} + \frac{5}{4} = 1 \] Thus, the minimum value of \( f(\theta) \) is: \[ f_{\text{min}} = -1 \] ### Final Result The maximum value of \( f(\theta) = \cos^2 \theta + \sin \theta \) is \( \frac{5}{4} \) and the minimum value is \( -1 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

Find max^(m)&min^(m) value of sin^(2)theta+cos^(4)theta

Find max^(m)&min^(m) value of sin^(2)theta+costheta

Find max^(m)&min^(m) value of sin^(3)theta.cos^(3)theta

Find max^(m)&min^(m) value of sin^(4)theta.cos^(4)theta

Find max^(m)&min^(m) value of 10+sin^(2)alpha .

Find max^(m)&min^(m) value of 10+tan^(2)alpha .

Find max^(m)&min^(m) value of 8sintheta+15costheta .

Find max^(m)&min^(m) value of 23sec^(2)theta+20tan^(2)theta

Find max^m & min^(m) value of 11+sec^(2)alpha .

Find max^(m)&min^(m) value of 27^(sinx).81^(cosx)