Home
Class 14
MATHS
If sec(5theta-50^(@))=cosec(theta+32^(@)...

If `sec(5theta-50^(@))=cosec(theta+32^(@))`, then the value of `theta` is: `(0^(@)ltthetalt90^(@))`

A

`33(1^(@))/(3)`

B

`18^(@)`

C

`3(1^(@))/(3)`

D

`30^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sec(5\theta - 50^\circ) = \csc(\theta + 32^\circ) \), we can follow these steps: ### Step 1: Use the identity for secant and cosecant Recall that \( \sec(x) = \csc(90^\circ - x) \). Therefore, we can rewrite the left-hand side: \[ \sec(5\theta - 50^\circ) = \csc(90^\circ - (5\theta - 50^\circ)) = \csc(90^\circ - 5\theta + 50^\circ) = \csc(140^\circ - 5\theta) \] Thus, we can rewrite the equation as: \[ \csc(140^\circ - 5\theta) = \csc(\theta + 32^\circ) \] ### Step 2: Set the angles equal to each other Since the cosecant function is equal when the angles are equal or differ by \(180^\circ\), we can set up the following equations: 1. \( 140^\circ - 5\theta = \theta + 32^\circ \) 2. \( 140^\circ - 5\theta = 180^\circ - (\theta + 32^\circ) \) ### Step 3: Solve the first equation Let's solve the first equation: \[ 140^\circ - 5\theta = \theta + 32^\circ \] Rearranging gives: \[ 140^\circ - 32^\circ = \theta + 5\theta \] \[ 108^\circ = 6\theta \] \[ \theta = \frac{108^\circ}{6} = 18^\circ \] ### Step 4: Check the second equation Now let's check the second equation: \[ 140^\circ - 5\theta = 180^\circ - (\theta + 32^\circ) \] This simplifies to: \[ 140^\circ - 5\theta = 180^\circ - \theta - 32^\circ \] \[ 140^\circ - 5\theta = 148^\circ - \theta \] Rearranging gives: \[ 140^\circ - 148^\circ = -\theta + 5\theta \] \[ -8^\circ = 4\theta \] \[ \theta = -2^\circ \] Since \(-2^\circ\) is not in the range \(0^\circ < \theta < 90^\circ\), we discard this solution. ### Conclusion The only valid solution is: \[ \theta = 18^\circ \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If sec theta - cosec theta = 0 ,then the value of tan theta + cot theta is

Find the vlaue of theta if 2cos3theta=1and0^(@)ltthetalt90^(@) .

Knowledge Check

  • If sec(7theta+28^(@))=cosec(30^(@)-3theta) then the value of theta is

    A
    `8^(@)`
    B
    `5^(@)`
    C
    `60^(@)`
    D
    `90^(@)`
  • If sin(theta+18^(@))=cos60^(@)(0ltthetalt90^(@)) , then the value of cos5theta is

    A
    `(1)/(2)`
    B
    0
    C
    `(1)/(sqrt(2))`
    D
    1
  • If sec15theta=cosec15theta(0^(@)ltthetalt10^(@)) then value of theta is

    A
    `9^(@)`
    B
    `5^(@)`
    C
    `8^(@)`
    D
    `3^(@)`
  • Similar Questions

    Explore conceptually related problems

    If sin5theta=cos20^(@)(0^(@)ltthetalt90^(@)) then value of theta is

    If 0^(@)ltthetalt90^(@)and2sin^(2)theta+3costheta=3 , then the value of theta is

    If 5costheta+12sintheta=13,0^(@)ltthetalt90^(@) , then the value of sin theta is

    If sec theta - cosec theta = 0 , then the value of (sec theta + cosec theta) is :

    If sintheta-costheta=0,0^(@)ltthetalt90^(@) , then the value of sin^(4)theta+cos^(4)theta is :