Home
Class 14
MATHS
If (tanA)/(1-cotA)+(cotA)/(1-tanA)=K+tan...

If `(tanA)/(1-cotA)+(cotA)/(1-tanA)=K+tanA+cotA` then K = ?

A

1

B

2

C

0

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\tan A}{1 - \cot A} + \frac{\cot A}{1 - \tan A} = K + \tan A + \cot A \] we will substitute specific values for \(A\) to find \(K\). Let's take \(A = 60^\circ\). ### Step 1: Calculate \(\tan 60^\circ\) and \(\cot 60^\circ\) We know that: \[ \tan 60^\circ = \sqrt{3} \] \[ \cot 60^\circ = \frac{1}{\tan 60^\circ} = \frac{1}{\sqrt{3}} \] ### Step 2: Substitute these values into the equation Substituting \(\tan 60^\circ\) and \(\cot 60^\circ\) into the left-hand side of the equation: \[ \frac{\tan 60^\circ}{1 - \cot 60^\circ} + \frac{\cot 60^\circ}{1 - \tan 60^\circ} = \frac{\sqrt{3}}{1 - \frac{1}{\sqrt{3}}} + \frac{\frac{1}{\sqrt{3}}}{1 - \sqrt{3}} \] ### Step 3: Simplify the first term The first term simplifies as follows: \[ 1 - \frac{1}{\sqrt{3}} = \frac{\sqrt{3} - 1}{\sqrt{3}} \] Thus, \[ \frac{\sqrt{3}}{1 - \frac{1}{\sqrt{3}}} = \frac{\sqrt{3}}{\frac{\sqrt{3} - 1}{\sqrt{3}}} = \frac{\sqrt{3} \cdot \sqrt{3}}{\sqrt{3} - 1} = \frac{3}{\sqrt{3} - 1} \] ### Step 4: Simplify the second term Now, simplifying the second term: \[ 1 - \sqrt{3} = -(\sqrt{3} - 1) \] Thus, \[ \frac{\frac{1}{\sqrt{3}}}{1 - \sqrt{3}} = \frac{\frac{1}{\sqrt{3}}}{-(\sqrt{3} - 1)} = -\frac{1}{\sqrt{3}(\sqrt{3} - 1)} = -\frac{1}{\sqrt{3}(\sqrt{3} - 1)} \] ### Step 5: Combine both terms Now we combine both terms: \[ \frac{3}{\sqrt{3} - 1} - \frac{1}{\sqrt{3}(\sqrt{3} - 1)} = \frac{3\sqrt{3}}{3 - \sqrt{3}} - \frac{1}{\sqrt{3}(\sqrt{3} - 1)} \] Finding a common denominator: \[ = \frac{3\sqrt{3} - 1}{\sqrt{3}(\sqrt{3} - 1)} \] ### Step 6: Substitute into the right-hand side Now we substitute into the right-hand side: \[ K + \tan 60^\circ + \cot 60^\circ = K + \sqrt{3} + \frac{1}{\sqrt{3}} \] ### Step 7: Equate both sides Equating both sides gives us: \[ \frac{3}{\sqrt{3} - 1} + \frac{1}{\sqrt{3}(\sqrt{3} - 1)} = K + \sqrt{3} + \frac{1}{\sqrt{3}} \] ### Step 8: Solve for \(K\) After simplifying and rearranging the equation, we find that: \[ K = 1 \] Thus, the value of \(K\) is: \[ \boxed{1} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

Prove that (tanA)/((1-cotA))+(cotA)/((1-tanA))=(1+tanA+cotA).

The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s e c A""cos e c A""+""1 (2) t a n A""+""cot A (3) s e c A""+""cos e c A (4) s in A""cos A""+""1

Knowledge Check

  • The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as

    A
    `secA"cosec"A+1`
    B
    `tanA+cotA`
    C
    `secA+ "cosec"A`
    D
    `sinAcosA+1`
  • The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as :

    A
    `sinA+cosA+1`
    B
    `secAcosecA+1`
    C
    `tanA+cotA`
    D
    `secA+cosecA`
  • The expression (tanA)//(1-cotA)+(cotA)//(1-tanA) can be written as :

    A
    sinAcosA +1
    B
    secAcosecA +1
    C
    tanA+cotA
    D
    secA+cosecA
  • Similar Questions

    Explore conceptually related problems

    Prove that : (tanA)/(1-cotA)+(cotA)/(1-tanA)=1+secA" cosec"A

    (tanA)/(1+secA) - (tanA)/(1-secA) = 2cosecA

    The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as

    The expression (tanA)/(1-cotA)+(cot A)/(1-tanA) can be written as

    What is the simplified value of (tanA)/(1-cotA)+(cotA)/(1-tanA)-(2)/(sin2A) ?