Home
Class 14
MATHS
If 7sin^(2)theta+3cos^(2)theta=4, then v...

If `7sin^(2)theta+3cos^(2)theta=4`, then value of `tantheta`.

A

`(1)/(sqrt(3))`

B

`sqrt(3)`

C

`2sqrt(3)`

D

`(1)/(2sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 7\sin^2\theta + 3\cos^2\theta = 4 \) and find the value of \( \tan\theta \), we can follow these steps: ### Step 1: Rewrite the equation using the Pythagorean identity We know that \( \sin^2\theta + \cos^2\theta = 1 \). We can express \( \sin^2\theta \) in terms of \( \cos^2\theta \): \[ \sin^2\theta = 1 - \cos^2\theta \] Substituting this into the original equation gives: \[ 7(1 - \cos^2\theta) + 3\cos^2\theta = 4 \] ### Step 2: Simplify the equation Expanding the equation: \[ 7 - 7\cos^2\theta + 3\cos^2\theta = 4 \] Combine like terms: \[ 7 - 4\cos^2\theta = 4 \] ### Step 3: Isolate the cosine term Rearranging the equation: \[ -4\cos^2\theta = 4 - 7 \] \[ -4\cos^2\theta = -3 \] Dividing both sides by -4: \[ \cos^2\theta = \frac{3}{4} \] ### Step 4: Solve for cosine Taking the square root of both sides: \[ \cos\theta = \pm \sqrt{\frac{3}{4}} = \pm \frac{\sqrt{3}}{2} \] ### Step 5: Find sine using the Pythagorean identity Using \( \sin^2\theta + \cos^2\theta = 1 \): \[ \sin^2\theta = 1 - \cos^2\theta = 1 - \frac{3}{4} = \frac{1}{4} \] Taking the square root: \[ \sin\theta = \pm \frac{1}{2} \] ### Step 6: Calculate \( \tan\theta \) The tangent function is defined as: \[ \tan\theta = \frac{\sin\theta}{\cos\theta} \] Using the values we found: 1. If \( \cos\theta = \frac{\sqrt{3}}{2} \) and \( \sin\theta = \frac{1}{2} \): \[ \tan\theta = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \] 2. If \( \cos\theta = -\frac{\sqrt{3}}{2} \) and \( \sin\theta = -\frac{1}{2} \): \[ \tan\theta = \frac{-\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \] Thus, in both cases, the value of \( \tan\theta \) is: \[ \tan\theta = \frac{1}{\sqrt{3}} \quad \text{or} \quad \tan\theta = \frac{\sqrt{3}}{3} \] ### Final Answer The value of \( \tan\theta \) is \( \frac{1}{\sqrt{3}} \) or \( \frac{\sqrt{3}}{3} \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If 7 sin^2 theta+3 cos^2 theta=4 , then the value of tan theta is ( theta is acute angle) यदि 7 sin^2 theta+3 cos^2 theta=4 , तो tan theta का मान क्या है ( theta न्यून कोण है।) ?

If 7 sin^2 theta+3 cos^2 theta=4 , then find value of tan theta .

Knowledge Check

  • If 7sin^(2)theta+3cos^(2)theta=4 then the value of sectheta+cosectheta is

    A
    `(2)/(sqrt(3))-2`
    B
    `(2)/(sqrt(3))+2`
    C
    `(2)/(sqrt(3))`
    D
    None of these
  • If 5sin^(2)theta+3cos^(2)theta=4 . Find the value of sin theta and cos theta :

    A
    `pm(1)/(sqrt2), pm(1)/(sqrt2)`
    B
    `pm(sqrt3)/(2),pmsqrt2`
    C
    `(sqrt3)/(2),(1)/(sqrt2)`
    D
    none of these
  • If 7sin^(2)theta+3cos^(2)theta=4 , then find tan theta .

    A
    `(1)/(sqrt(3))`
    B
    `(2)/(sqrt(3))`
    C
    `sqrt(3)`
    D
    `1`
  • Similar Questions

    Explore conceptually related problems

    If 7sin^2theta + 3cos^2theta=4 ,then the value of sectheta+cosectheta is

    If 7sin^(2)theta+3cos^(2)theta=4 then show that tan theta=(1)/(sqrt(3))

    If 7sin^(2)theta+3cos^(2)theta=4 ,then prove that sec theta+cosec theta=2+(2)/(sqrt(3))

    If 7 sin^(2) theta + 3 cos^(2) theta = 4 , find the value of sec theta :

    If theta be an acute angle and 7 sin^(2) theta + 3 cos^(@) theta = 4 , then the value of tan theta is