Home
Class 14
MATHS
cotx-tanx=?...

`cotx-tanx=?`

A

`cot2x`

B

`2cot^(2)x`

C

`2cot2x`

D

`cot^(2)2x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cot x - \tan x \), we can follow these steps: ### Step 1: Write the definitions of cotangent and tangent The cotangent and tangent functions can be expressed in terms of sine and cosine: \[ \cot x = \frac{\cos x}{\sin x} \quad \text{and} \quad \tan x = \frac{\sin x}{\cos x} \] ### Step 2: Substitute the definitions into the expression Substituting these definitions into the expression gives: \[ \cot x - \tan x = \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x} \] ### Step 3: Find a common denominator To subtract these fractions, we need a common denominator. The least common multiple (LCM) of \( \sin x \) and \( \cos x \) is \( \sin x \cos x \). Thus, we can rewrite the expression as: \[ \cot x - \tan x = \frac{\cos^2 x}{\sin x \cos x} - \frac{\sin^2 x}{\sin x \cos x} \] ### Step 4: Combine the fractions Now that we have a common denominator, we can combine the fractions: \[ \cot x - \tan x = \frac{\cos^2 x - \sin^2 x}{\sin x \cos x} \] ### Step 5: Use the double angle identity We recognize that \( \cos^2 x - \sin^2 x \) can be expressed using the double angle identity: \[ \cos^2 x - \sin^2 x = \cos 2x \] Thus, we can rewrite the expression as: \[ \cot x - \tan x = \frac{\cos 2x}{\sin x \cos x} \] ### Step 6: Use another double angle identity The denominator \( \sin x \cos x \) can also be expressed using the double angle identity: \[ \sin x \cos x = \frac{1}{2} \sin 2x \] So we can rewrite the expression as: \[ \cot x - \tan x = \frac{\cos 2x}{\frac{1}{2} \sin 2x} = \frac{2 \cos 2x}{\sin 2x} \] ### Step 7: Simplify to cotangent Finally, we can express this in terms of cotangent: \[ \cot x - \tan x = 2 \cot 2x \] Thus, the final result is: \[ \cot x - \tan x = 2 \cot 2x \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

int(3cotx - 2 tanx)^(2) dx

Find the general solution of the equation, 2+tanx.cotx/2.tanx/2=0

Knowledge Check

  • What is the value of (cotx)/(1-tanx)+(tanx)/(1-cotx) ?

    A
    `sinxcosx+1`
    B
    `secx cosec x+1`
    C
    `tanx cot x+1`
    D
    `sec^(2)x cosec^(2)x+1`
  • If tan(cotx)=cot(tanx), then sin2x is equal to

    A
    `(2)/((2n+1)pi)`
    B
    `(4)/((2n+1)pi)`
    C
    `(2)/(n(n+1)pi)`
    D
    `(4)/(n(n+1)pi)`
  • If I=int(sqrt(cotx)-sqrt(tanx))dx, then I equals

    A
    `sqrt(2)log(sqrt(tanx)-sqrt(cotx))+C`
    B
    `sqrt(2)log|sinx+cosx+sqrt(sin2x)|+C`
    C
    `sqrt(2)log|sinx-cosx+sqrt(2)sinx cosx|+C`
    D
    `sqrt(2)log|sin(x+pi//4)+sqrt(2)sinx cosx|+C`
  • Similar Questions

    Explore conceptually related problems

    Differentiate the following w.r.t. x : (tanx)^(cotx)+x^(tanx),0ltxltpi/4

    Evaluate: int(sqrt(cotx)-sqrt(tanx))/(1+3sin2x)dx

    If m=sinx+cos x+tan x+cot x+sec x+cosec x and n=sinx+cosx-tanx-cotx-secx-cosecx then (m+n-2)(m-n)=( where x is an acute angle )

    (d)/(dx)[tan^(-1)(cotx)+cot^(-1)(tanx)]=

    Calculate the (dy)/(dx) of the given function y=tan^(-1)(cotx)+cot^(-1)(tanx) , in the interval x in ((pi)/2pi)