Home
Class 12
MATHS
If vec(a), vec(b), vec(c) are the positi...

If `vec(a), vec(b), vec(c)` are the position vectors of vertices A, B, C of a triangle ABC, Show that the area of the triangle is `(1)/(2) |vec(b) xx vec(c) + vec(c) xx vec(a) + vec(a) xx vec(b)|`

Text Solution

Verified by Experts

The correct Answer is:
`- hat(i)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C (In sub-parts (i) and (ii) choose the correct option and In sub-parts (iii) to (v) , answer the questions as instructed )|5 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - B (In sub-parts (i) and (ii) choose the correct option and In sub-parts (iii) to (v) , answer the questions as instructed )|5 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos
  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos

Similar Questions

Explore conceptually related problems

If veca , vec b , vec c are the position vectors of the vertices A ,B ,C of a triangle A B C , show that the area triangle A B Ci s1/2| vec axx vec b+ vec bxx vec c+ vec cxx vec a|dot Deduce the condition for points veca , vec b , vec c to be collinear.

If vec a ,\ vec b ,\ vec c are position vectors of the vertices of a triangle, then write the position vector of its centroid.

If vec a ,\ vec b ,\ vec c are the position vectors of the vertices of an equilateral triangle whose orthocentre is the origin, then write the value of vec a+ vec b+ vec c

If vec a ,\ vec b ,\ vec c are position vectors of the vertices A ,\ B\ a n d\ C respectively, of a triangle A B C ,\ write the value of vec A B+ vec B C+ vec C Adot

What are the values of the following vec(B) xx vec(A) , " if " vec(A) xx vec(B) = vec(C )

If vec(A)+vec(B)+vec(C )=0 then vec(A)xx vec(B) is

If vec a , vec b , vec ca n d vec d are the position vectors of the vertices of a cyclic quadrilateral A B C D , prove that (| vec axx vec b+ vec bxx vec d+ vec d xx vec a|)/(( vec b- vec a)dot( vec d- vec a))+(| vec bxx vec c+ vec cxx vec d+ vec d xx vec b|)/(( vec b- vec c)dot( vec d- vec c))=0dot

Prove that vec(a)[(vec(b) + vec(c)) xx (vec(a) + 3vec(b) + 4vec(c))] = [ vec(a) vec(b) vec(c)]

a, b are the magnitudes of vectors vec(a) & vec(b) . If vec(a)xx vec(b)=0 the value of vec(a).vec(b) is

Prove that vec(a). {(vec(b) + vec(c)) xx (vec(a) + 2vec(b) + 3vec(c))} = [vec(a) vec(b) vec(c)] .