Home
Class 11
MATHS
Prove that sin(A+B)sin(A-B)=sin^(2)A-sin...

Prove that `sin(A+B)sin(A-B)`=`sin^(2)A-sin^(2)B`

Answer

Step by step text solution for Prove that sin(A+B)sin(A-B)=sin^(2)A-sin^(2)B by MATHS experts to help you in doubts & scoring excellent marks in Class 11 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Prove that sin(A+B)sin(A-B)=cos^2B-cos^2A

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1, Prove that: sin^(4)A+sin^(4)B=2sin^(2)A sin^(2)B

Prove that cos(A+B)cos(A-B)=cos^(2)A-sin^(2)B=cos^(2)B-sin^(2)A

Prove that sin^(2)(A+B)-sin^(2)(A-B)=sin2A*sin2B

Prove that :(tan(A+B))/(cot(A-B))=(sin^(2)A-sin^(2)B)/(cos^(2)A-sin^(2)B)

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1 then prove that (i)sin^(2)A+sin^(2)B=2sin^(2)A sin^(2)B(ii)(cos^(4)B)/(cos^(2)A)+(sin^(4)B)/(sin^(2)A)=1

In any Delta ABC prove that :sin(A-B)(sin(A-B))/(sin(A+B))=(a^(2)-b^(2))/(c^(2))

Prove that: sin(A+2B)sinA-sinBsin(2A+B)sinB=sin(A+B)sin(A-B)

Prove that in a triangle ABC , sin^(2)A - sin^(2)B + sin^(2)C = 2sin A *cos B *sin C .

19.Prove that sin (A + B) sin (AB) + sin (B + C) sin (BC) + sin (C + A) sin (CA) = 0