Home
Class 12
MATHS
The unit vector perpendicular to the vec...

The unit vector perpendicular to the vectors `hati-hatj and hati +hatj` forming a right handed system is

A

`hatk`

B

`-hatk`

C

`(hati-hatj)/(sqrt(2))`

D

`(hati+hatj)/(sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vector perpendicular to the vectors \( \hat{i} - \hat{j} \) and \( \hat{i} + \hat{j} \), we can follow these steps: ### Step 1: Define the Vectors Let: - Vector \( \mathbf{A} = \hat{i} - \hat{j} \) - Vector \( \mathbf{B} = \hat{i} + \hat{j} \) ### Step 2: Calculate the Cross Product The cross product of two vectors \( \mathbf{A} \) and \( \mathbf{B} \) gives us a vector that is perpendicular to both. We can calculate \( \mathbf{A} \times \mathbf{B} \) using the determinant method: \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 0 \\ 1 & 1 & 0 \end{vmatrix} \] ### Step 3: Calculate the Determinant To compute the determinant, we expand it: \[ \mathbf{A} \times \mathbf{B} = \hat{i} \begin{vmatrix} -1 & 0 \\ 1 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: - For \( \hat{i} \): \( (-1)(0) - (0)(1) = 0 \) - For \( \hat{j} \): \( (1)(0) - (0)(1) = 0 \) - For \( \hat{k} \): \( (1)(1) - (-1)(1) = 1 + 1 = 2 \) So, we have: \[ \mathbf{A} \times \mathbf{B} = 0\hat{i} - 0\hat{j} + 2\hat{k} = 2\hat{k} \] ### Step 4: Find the Magnitude of the Cross Product The magnitude of \( \mathbf{A} \times \mathbf{B} \) is: \[ |\mathbf{A} \times \mathbf{B}| = |2\hat{k}| = 2 \] ### Step 5: Find the Unit Vector The unit vector \( \mathbf{C} \) in the direction of \( \mathbf{A} \times \mathbf{B} \) is given by: \[ \mathbf{C} = \frac{\mathbf{A} \times \mathbf{B}}{|\mathbf{A} \times \mathbf{B}|} = \frac{2\hat{k}}{2} = \hat{k} \] ### Final Answer Thus, the unit vector perpendicular to the vectors \( \hat{i} - \hat{j} \) and \( \hat{i} + \hat{j} \) is: \[ \hat{k} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

A vector perpendicular to both the vector 2hati -3hatj and 3hati - 2hatj is

A unit vector perpendicular to both hati + hatj and hatj + hatk is

The unit vector perpendicular to the vectors 6hati+2hatj+3hatk and 3hati-6hatj-2hatk , is

Find a unit vector perpendicular to both the vectors hati-2hatj+hatk and hati+2hatj+hatk .

Find the unit vector perpendicular to the two vectors hati+2hatj-hatk and 2hati+3hatj+hatk .

Unit vector perpnicular to vector A=-3hati-2hatj -3hatk and 2hati + 4hatj +6hatk is

Find a unit vector parallel to the vector -3hati+4hatj .

What is the unit vector perpendicular to each of the vectors 2hati-hatj+hatk and 3hati+4hatj-hatk ? Prove that the sine of the angle between these two vectors is sqrt(155/156)

A vector perpendicular to (4hati-3hatj) may be :

A vector perpendicular to (4hati-3hatj) may be :