Home
Class 6
MATHS
If a and b are two natural numbers, writ...

If a and b are two natural numbers, write the rule that gives the commutative property of multiplication of natural numbers.

Text Solution

AI Generated Solution

The correct Answer is:
### Step-by-Step Solution: 1. **Understanding the Commutative Property**: The commutative property of multiplication states that changing the order of the numbers being multiplied does not change the product. This applies to natural numbers as well. 2. **Defining the Variables**: Let’s denote two natural numbers as \( a \) and \( b \). 3. **Writing the Rule**: According to the commutative property, the rule can be expressed as: \[ a \times b = b \times a \] This means that multiplying \( a \) by \( b \) gives the same result as multiplying \( b \) by \( a \). 4. **Example to Illustrate**: - Let's take \( a = 5 \) and \( b = 2 \). - Calculate \( a \times b \): \[ 5 \times 2 = 10 \] - Now calculate \( b \times a \): \[ 2 \times 5 = 10 \] - Both calculations give the same result, confirming the commutative property. 5. **Conclusion**: Therefore, the commutative property of multiplication for natural numbers can be summarized as: \[ a \times b = b \times a \] This holds true for any natural numbers \( a \) and \( b \).
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If a, b, and c are three numbers, write the rule that gives the associative property of multiplication of three numbers.

If a, b, and c are three numbers, write the rule that gives the associative property of addition of three numbers.

Zero is a natural number.

Take any two integers and verify the commutative property of multiplication for integers.

If x, y, and z are three natural numbers, then write the rule that shows that multiplication distributes over addition.

Use rational numbers (4)/(9) "and" (-7)/(12) to verify the commutative property for the adition of rational numbers.

Write the sum of first n odd natural numbers.

Write the sum of first n even natural numbers.

Write the sum of first n even natural numbers.

Sum of two natural numbers is a rational number.