Home
Class 9
MATHS
If x + 2y + 3z = 0 and x^(3) + 4y^(3) + ...

If `x + 2y + 3z = 0 and x^(3) + 4y^(3) + 9z^(3)= 18 xyz`, evaluate: `((x+2y)^(2))/(xy) + ((2y + 3z)^(2))/(yz) + ((3z+ x)^(2))/(zx)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \frac{(x + 2y)^2}{xy} + \frac{(2y + 3z)^2}{yz} + \frac{(3z + x)^2}{zx} \] given the conditions: 1. \( x + 2y + 3z = 0 \) 2. \( x^3 + 4y^3 + 9z^3 = 18xyz \) ### Step 1: Express each term in the expression using the given condition From the first condition \( x + 2y + 3z = 0 \), we can express each of the terms \( x + 2y \), \( 2y + 3z \), and \( 3z + x \): - \( x + 2y = -3z \) - \( 2y + 3z = -x \) - \( 3z + x = -2y \) ### Step 2: Substitute these expressions into the original expression Now substituting these into the expression: \[ \frac{(-3z)^2}{xy} + \frac{(-x)^2}{yz} + \frac{(-2y)^2}{zx} \] This simplifies to: \[ \frac{9z^2}{xy} + \frac{x^2}{yz} + \frac{4y^2}{zx} \] ### Step 3: Combine the terms over a common denominator The common denominator for these fractions is \( xyz \). Thus, we can rewrite the expression as: \[ \frac{9z^2 \cdot z}{xyz} + \frac{x^2 \cdot x}{xyz} + \frac{4y^2 \cdot y}{xyz} \] This gives us: \[ \frac{9z^3 + x^3 + 4y^3}{xyz} \] ### Step 4: Substitute the second condition From the second condition, we know that: \[ x^3 + 4y^3 + 9z^3 = 18xyz \] Thus, we can substitute this into our expression: \[ \frac{18xyz}{xyz} \] ### Step 5: Simplify the expression Now, simplifying gives: \[ 18 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{18} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If x^(3)+y^(3)+z^(3)=3xyz and x+y+z=0, find the value of ((x+y)^(2))/(xy)=((y+z)^(2))/(yz) +((z+x)^(2))/(zx)

If x^(3) + y^(3) + z^(3) = 3xyz and x + y + z = 0 , find the value of : ((x+y)^(2))/(xy) + ((y+z)^(2))/(yz) + ((z+x)^(2))/(zx)

If x-y +z = 5 and x^(2) +y^(2) +z^(2) = 49, find the value of : zx-xy -yz.

If x+y -z = 4 and x^(2) + y^(2) + z^(2) = 30 , then find the value of xy- yz- zx

If x^(2) + y^(2) + z^(2) - xy- yz - zx = 0 , prove that : x= y = z

Simplify: ((x^(2)-y^(2))^(3) + (y^(2) - z^(2))^(3) + (z^(2) -x^(2))^(3))/((x-y)^(3) + (y-z)^(3) + (z-x)^(3))

(y^(2)+yz+z^(2))/((x-y)(x-z)) + (z^(2)+zx+x^(2))/((y-z)(y-x)) + (x^(2)+xy+y^(2))/((z-x)(z-y))

If x + y + z = 12, x^(2) + Y^(2) + z^(2) = 96 and (1)/(x)+(1)/(y)+(1)/(z)= 36 . Then find the value x^(3) + y^(3)+z^(3).

Verify that x^(3)+y^(3)+z^(3)-3xyz=(1)/(2)(x+y+z)[(x-y)^(2)+(y-z)^(2)+(z-x)^(2)]

Factorize: (2x-3y)^3+(4z-2x)^3+(3y-4z)^3