Home
Class 9
MATHS
If (3)/(2) log a + (2)/(3) log b - 1 = 0...

If `(3)/(2) log a + (2)/(3) log b - 1 = 0`, find the value of `a^(9).b^(4)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{3}{2} \log a + \frac{2}{3} \log b - 1 = 0\) and find the value of \(a^9 \cdot b^4\), we can follow these steps: ### Step 1: Rearranging the Equation Start by isolating the logarithmic terms: \[ \frac{3}{2} \log a + \frac{2}{3} \log b = 1 \] ### Step 2: Expressing 1 as a Logarithm We can express 1 in terms of logarithms. Since \(\log_{10} 10 = 1\), we can rewrite the equation as: \[ \frac{3}{2} \log a + \frac{2}{3} \log b = \log_{10} 10 \] ### Step 3: Applying Logarithmic Properties Using the property of logarithms that states \(x \log a = \log a^x\), we can rewrite the equation: \[ \log a^{\frac{3}{2}} + \log b^{\frac{2}{3}} = \log_{10} 10 \] ### Step 4: Combining Logarithms Using the property \(\log a + \log b = \log(ab)\), we can combine the logarithms: \[ \log \left( a^{\frac{3}{2}} \cdot b^{\frac{2}{3}} \right) = \log_{10} 10 \] ### Step 5: Removing the Logarithm Since the logarithm is equal, we can remove it by exponentiating both sides: \[ a^{\frac{3}{2}} \cdot b^{\frac{2}{3}} = 10 \] ### Step 6: Finding \(a^9 \cdot b^4\) To find \(a^9 \cdot b^4\), we can manipulate the equation. We can raise both sides to the power of 6: \[ \left( a^{\frac{3}{2}} \cdot b^{\frac{2}{3}} \right)^6 = 10^6 \] This simplifies to: \[ a^{9} \cdot b^{4} = 10^6 \] ### Final Answer Thus, the value of \(a^9 \cdot b^4\) is: \[ \boxed{10^6} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    ICSE|Exercise EXERCISE 8(C)|11 Videos
  • ISOSCELES TRIANGLES

    ICSE|Exercise EXERCISE 10 (B)|4 Videos
  • MEAN AND MEDIAN

    ICSE|Exercise Exercise 19(C) |36 Videos

Similar Questions

Explore conceptually related problems

Find the value of 3^(2log_(9)3) .

If 3 log sqrtm + 2 log ""^(3) sqrtn = 1. find the value of m^(9) n^(4) .

If log_(sqrt8) b = 3 1/3 , then find the value of b.

If = log "" ( 5)/(7) , m = log ""( 7)/(9) and n = 2 ( log 3 - log sqrt5) , find the value of 7^(l+ m + n )

If log2=0.301 and log3=0.477, find the value of log(3.375).

If l= log "" ( 5)/(7) , m = log ""( 7)/(9) and n = 2 ( log 3 - log sqrt5) , find the value of l+ m + n

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : a + b+ c

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : 15^(a+ b+ c)

If log 2 = 0.3010 and log 3 = 0.4771, find the value of : (i) log 12 (ii) log 1.2 (iii) log 3.6 (iv) log 15 (v) log 25 (vi) (2)/(3) log 8

If log 2 = 0.3010 and log 3 = 0.4771, find the value of : (i) log 6 (ii) log 5 (iii) log sqrt(24)

ICSE-LOGARITHMS -EXERCISE 8(D)
  1. If (3)/(2) log a + (2)/(3) log b - 1 = 0, find the value of a^(9).b^(4...

    Text Solution

    |

  2. If x = 1 + log 2 - log 5, y = 2 log 3 and z = log a - log 5, find the ...

    Text Solution

    |

  3. If x = log 0.6, y = log 1.25 and z = log 3 - 2 log 2, find the values ...

    Text Solution

    |

  4. If a^(2) = log x, b^(3) = log y and 3a^(2) - 2b^(3) = 6 log z, express...

    Text Solution

    |

  5. If "log" (a-b)/(2) = (1)/(2) (log a + log b), show that : a^(2) + b^(2...

    Text Solution

    |

  6. If a^(2) + b^(2) = 23ab, show that : "log" (a+b)/(5) = (1)/(2) (log ...

    Text Solution

    |

  7. If m = log 20 and n = log 25, find the value of x, so that : 2 log(x -...

    Text Solution

    |

  8. Solve for x and y, if x gt 0 and y gt 0 : log xy = "log" (x)/(y) + 2...

    Text Solution

    |

  9. Find x, if : (i) log(x) 625 = -4 (ii) log(x) (5x - 6) = 2.

    Text Solution

    |

  10. If p = log 20 and q = log 25, find the value of x, if 2 log(x + 1) = 2...

    Text Solution

    |

  11. If log(2)(x + y) = log(3)(x - y) = (log 25)/(log 0.2), find the values...

    Text Solution

    |

  12. Given : (log x)/(log y) = (3)/(2) and log(xy) = 5, find the values of ...

    Text Solution

    |

  13. Given log(10)x = a and log(10) y = b. (i) Write down 10^(a - 1) in t...

    Text Solution

    |

  14. Solve : log(5)(x + 1) - 1 = 1 + log(5)(x - 1).

    Text Solution

    |

  15. Solve for x, if : log(x)49 - log(x)7 + "log"(x)(1)/(343) + 2 = 0.

    Text Solution

    |

  16. If a^(2) = log x, b^(3) = log y and (a^(2))/(2) - (b^(3))/(3) = log c,...

    Text Solution

    |

  17. Given x = log(10)12, y = log(4)2 xx log(10)9 and z = log(10) 0.4, find...

    Text Solution

    |

  18. Solve for x, log(x) 15 sqrt(5) = 2 - log(x) 3 sqrt(5).

    Text Solution

    |

  19. Evaluate : (i) log(b)a xx log(c)b xx log(a)c (ii) log(3) 8 div log...

    Text Solution

    |

  20. Show that : log(a)m div log(ab)m = 1 + log(a)b

    Text Solution

    |