Home
Class 9
MATHS
If (3)/(2) log a + (2)/(3) log b - 1 = 0...

If `(3)/(2) log a + (2)/(3) log b - 1 = 0`, find the value of `a^(9).b^(4)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{3}{2} \log a + \frac{2}{3} \log b - 1 = 0\) and find the value of \(a^9 \cdot b^4\), we can follow these steps: ### Step 1: Rearranging the Equation Start by isolating the logarithmic terms: \[ \frac{3}{2} \log a + \frac{2}{3} \log b = 1 \] ### Step 2: Expressing 1 as a Logarithm We can express 1 in terms of logarithms. Since \(\log_{10} 10 = 1\), we can rewrite the equation as: \[ \frac{3}{2} \log a + \frac{2}{3} \log b = \log_{10} 10 \] ### Step 3: Applying Logarithmic Properties Using the property of logarithms that states \(x \log a = \log a^x\), we can rewrite the equation: \[ \log a^{\frac{3}{2}} + \log b^{\frac{2}{3}} = \log_{10} 10 \] ### Step 4: Combining Logarithms Using the property \(\log a + \log b = \log(ab)\), we can combine the logarithms: \[ \log \left( a^{\frac{3}{2}} \cdot b^{\frac{2}{3}} \right) = \log_{10} 10 \] ### Step 5: Removing the Logarithm Since the logarithm is equal, we can remove it by exponentiating both sides: \[ a^{\frac{3}{2}} \cdot b^{\frac{2}{3}} = 10 \] ### Step 6: Finding \(a^9 \cdot b^4\) To find \(a^9 \cdot b^4\), we can manipulate the equation. We can raise both sides to the power of 6: \[ \left( a^{\frac{3}{2}} \cdot b^{\frac{2}{3}} \right)^6 = 10^6 \] This simplifies to: \[ a^{9} \cdot b^{4} = 10^6 \] ### Final Answer Thus, the value of \(a^9 \cdot b^4\) is: \[ \boxed{10^6} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHMS

    ICSE|Exercise EXERCISE 8(C)|11 Videos
  • ISOSCELES TRIANGLES

    ICSE|Exercise EXERCISE 10 (B)|4 Videos
  • MEAN AND MEDIAN

    ICSE|Exercise Exercise 19(C) |36 Videos

Similar Questions

Explore conceptually related problems

Find the value of 3^(2log_(9)3) .

If 3 log sqrtm + 2 log ""^(3) sqrtn = 1. find the value of m^(9) n^(4) .

If log_(sqrt8) b = 3 1/3 , then find the value of b.

If = log "" ( 5)/(7) , m = log ""( 7)/(9) and n = 2 ( log 3 - log sqrt5) , find the value of 7^(l+ m + n )

If log2=0.301 and log3=0.477, find the value of log(3.375).

If l= log "" ( 5)/(7) , m = log ""( 7)/(9) and n = 2 ( log 3 - log sqrt5) , find the value of l+ m + n

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : a + b+ c

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : 15^(a+ b+ c)

If log 2 = 0.3010 and log 3 = 0.4771, find the value of : (i) log 12 (ii) log 1.2 (iii) log 3.6 (iv) log 15 (v) log 25 (vi) (2)/(3) log 8

If log 2 = 0.3010 and log 3 = 0.4771, find the value of : (i) log 6 (ii) log 5 (iii) log sqrt(24)