Home
Class 9
MATHS
Given A = (x + 2, -2) and B = (11, 6). F...

Given A = (x + 2, -2) and B = (11, 6). Find x if AB = 17.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that the distance \( AB \) between the points \( A = (x + 2, -2) \) and \( B = (11, 6) \) is equal to 17. We will use the distance formula, which is given by: \[ AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] ### Step-by-Step Solution: 1. **Identify the coordinates:** - Point \( A \) has coordinates \( (x + 2, -2) \). - Point \( B \) has coordinates \( (11, 6) \). 2. **Apply the distance formula:** \[ AB = \sqrt{(11 - (x + 2))^2 + (6 - (-2))^2} \] 3. **Simplify the expression:** - Calculate \( 11 - (x + 2) \): \[ 11 - (x + 2) = 11 - x - 2 = 9 - x \] - Calculate \( 6 - (-2) \): \[ 6 - (-2) = 6 + 2 = 8 \] 4. **Substitute back into the distance formula:** \[ AB = \sqrt{(9 - x)^2 + 8^2} \] \[ AB = \sqrt{(9 - x)^2 + 64} \] 5. **Set the distance equal to 17:** \[ \sqrt{(9 - x)^2 + 64} = 17 \] 6. **Square both sides to eliminate the square root:** \[ (9 - x)^2 + 64 = 17^2 \] \[ (9 - x)^2 + 64 = 289 \] 7. **Isolate the squared term:** \[ (9 - x)^2 = 289 - 64 \] \[ (9 - x)^2 = 225 \] 8. **Take the square root of both sides:** \[ 9 - x = \pm 15 \] 9. **Solve for \( x \):** - Case 1: \( 9 - x = 15 \) \[ -x = 15 - 9 \] \[ -x = 6 \quad \Rightarrow \quad x = -6 \] - Case 2: \( 9 - x = -15 \) \[ -x = -15 - 9 \] \[ -x = -24 \quad \Rightarrow \quad x = 24 \] 10. **Final values of \( x \):** \[ x = -6 \quad \text{or} \quad x = 24 \] ### Final Answer: The values of \( x \) are \( 24 \) and \( -6 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DISTANCE FORMULA

    ICSE|Exercise EXERCISE 52|1 Videos
  • DISTANCE FORMULA

    ICSE|Exercise EXERCISE 53|1 Videos
  • DISTANCE FORMULA

    ICSE|Exercise EXERCISE 50|1 Videos
  • CONSTRUCTION OF POLYGONS

    ICSE|Exercise Exercise 15|76 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos

Similar Questions

Explore conceptually related problems

Given A= [(3,6),(-2,-8)] and B= [-2" " 16] , find the matrix X such that XA= B

Find dy/dx if x= y^2-6y+11

If a+b = 5 and ab = 6 , find a^2 + b^2

If a^(2) +b^(2) = 13 and ab= 6 find: a+b

If a^(2) +b^(2) = 13 and ab= 6 find: a-b

If the points A(1,3) , B(-2,1) , C(x,2) and D(-1,5) are given and AB is perpendicular to CD , find the value of x .

If a-b=6 and ab=16 , find a^2 +b^2

Four points A(6,\ 3),\ \ B(-3,\ 5),\ \ C(4,\ -2) and D(x ,\ 2x) are given in such a way that area of ( D B C)/( A B C)=1/2 , find x .

If a+ b = 7 and ab= 6, find a^(2) - b^(2)

(i) If x = (6ab)/(a + b) , find the value of : (x + 3a)/(x - 3a) + (x + 3b)/(x - 3b) . (ii) a = (4sqrt(6))/(sqrt(2) + sqrt(3)) , find the value of : (a + 2sqrt(2))/(a - 2sqrt(2)) + (a + 2sqrt(3))/(a - 2sqrt(3)) .