Given A = (x + 2, -2) and B = (11, 6). Find x if AB = 17.
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that the distance \( AB \) between the points \( A = (x + 2, -2) \) and \( B = (11, 6) \) is equal to 17. We will use the distance formula, which is given by:
\[
AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]
### Step-by-Step Solution:
1. **Identify the coordinates:**
- Point \( A \) has coordinates \( (x + 2, -2) \).
- Point \( B \) has coordinates \( (11, 6) \).
2. **Apply the distance formula:**
\[
AB = \sqrt{(11 - (x + 2))^2 + (6 - (-2))^2}
\]
3. **Simplify the expression:**
- Calculate \( 11 - (x + 2) \):
\[
11 - (x + 2) = 11 - x - 2 = 9 - x
\]
- Calculate \( 6 - (-2) \):
\[
6 - (-2) = 6 + 2 = 8
\]
4. **Substitute back into the distance formula:**
\[
AB = \sqrt{(9 - x)^2 + 8^2}
\]
\[
AB = \sqrt{(9 - x)^2 + 64}
\]
5. **Set the distance equal to 17:**
\[
\sqrt{(9 - x)^2 + 64} = 17
\]
6. **Square both sides to eliminate the square root:**
\[
(9 - x)^2 + 64 = 17^2
\]
\[
(9 - x)^2 + 64 = 289
\]
7. **Isolate the squared term:**
\[
(9 - x)^2 = 289 - 64
\]
\[
(9 - x)^2 = 225
\]
8. **Take the square root of both sides:**
\[
9 - x = \pm 15
\]
9. **Solve for \( x \):**
- Case 1: \( 9 - x = 15 \)
\[
-x = 15 - 9
\]
\[
-x = 6 \quad \Rightarrow \quad x = -6
\]
- Case 2: \( 9 - x = -15 \)
\[
-x = -15 - 9
\]
\[
-x = -24 \quad \Rightarrow \quad x = 24
\]
10. **Final values of \( x \):**
\[
x = -6 \quad \text{or} \quad x = 24
\]
### Final Answer:
The values of \( x \) are \( 24 \) and \( -6 \).
Topper's Solved these Questions
DISTANCE FORMULA
ICSE|Exercise EXERCISE 52|1 Videos
DISTANCE FORMULA
ICSE|Exercise EXERCISE 53|1 Videos
DISTANCE FORMULA
ICSE|Exercise EXERCISE 50|1 Videos
CONSTRUCTION OF POLYGONS
ICSE|Exercise Exercise 15|76 Videos
EXPANSIONS
ICSE|Exercise 4 Marks questions|10 Videos
Similar Questions
Explore conceptually related problems
Given A= [(3,6),(-2,-8)] and B= [-2" " 16] , find the matrix X such that XA= B
Find dy/dx if x= y^2-6y+11
If a+b = 5 and ab = 6 , find a^2 + b^2
If a^(2) +b^(2) = 13 and ab= 6 find: a+b
If a^(2) +b^(2) = 13 and ab= 6 find: a-b
If the points A(1,3) , B(-2,1) , C(x,2) and D(-1,5) are given and AB is perpendicular to CD , find the value of x .
If a-b=6 and ab=16 , find a^2 +b^2
Four points A(6,\ 3),\ \ B(-3,\ 5),\ \ C(4,\ -2) and D(x ,\ 2x) are given in such a way that area of ( D B C)/( A B C)=1/2 , find x .
If a+ b = 7 and ab= 6, find a^(2) - b^(2)
(i) If x = (6ab)/(a + b) , find the value of : (x + 3a)/(x - 3a) + (x + 3b)/(x - 3b) . (ii) a = (4sqrt(6))/(sqrt(2) + sqrt(3)) , find the value of : (a + 2sqrt(2))/(a - 2sqrt(2)) + (a + 2sqrt(3))/(a - 2sqrt(3)) .