Home
Class 12
MATHS
If n is an integer then show that (1+i)^...

If n is an integer then show that `(1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos(n pi)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If n is be a positive integer,then (1+i)^(n)+(1-i)^(n)=2^(k)cos((n pi)/(4)), where k is equal to

If n be a positive integer, then prove that (1+i)^n+(1-i)^n=2^(n/2+1)."cos"((npi)/4)

Show that (1-i)^(n)(1-(1)/(i))^(n)=2^(n) for all n in N

If ‘n’ be any integer ,then n(n+1)( 2n+1) is :

If n is a positive integer show that (n+1)^(2)+(n+2)^(2)+....4n^(2)=(n)/(6)(2n+1)(7n+1)

Prove that (a)(1+i)^(n)+(1-i)^(n)=2^((n+2)/(2))*cos((n pi)/(4)) where n is a positive integer. (b) (1+i sqrt(3))^(n)+(1-i sqrt(3)^(n)=2^(n+1)cos((n pi)/(3)), where n is a positive integer

Find the value of 2^n/((1+i)^(2n))+(1+i)^(2n)/(2^n)

If n in Z , then (2^(n))/(1+i)^(2n)+(1+i)^(2n)/(2^(n)) is equal to