Home
Class 12
MATHS
sum(n=1)^(n) (1)/((4 n-1)(4 / t+3))=...

`sum_(n=1)^(n) (1)/((4 n-1)(4 / t+3))=`

A

`(2 n)/(3(4 n+3))`

B

`3 n(4 n-1)`

C

`(n)/(3(3 n+4)`

D

`(n(n+1)^(2)(n+2))/(12)`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|32 Videos
  • MATHEMATICAL REASONING

    HIMALAYA PUBLICATION|Exercise Question Bank|97 Videos

Similar Questions

Explore conceptually related problems

If sum_(r=1)^(n)T_(r)=(n(n+1)(n+2)(n+3))/(12) where T_(r) denotes the rth term of the series. Find lim_(nto oo) sum_(r=1)^(n)(1)/(T_(r)) .

The sequence a_(1),a_(2),a_(3),".......," is a geometric sequence with common ratio r . The sequence b_(1),b_(2),b_(3),".......," is also a geometric sequence. If b_(1)=1,b_(2)=root4(7)-root4(28)+1,a_(1)=root4(28)" and "sum_(n=1)^(oo)(1)/(a_(n))=sum_(n=1)^(oo)(b_(n)) , then the value of (1+r^(2)+r^(4)) is

Knowledge Check

  • If sum_(r=1)^(n) t_(r ) = sum_(k=1)^(n) sum_(j=1)^(k) sum_(i=1)^(j) 2 , then sum_(r=1)^(n) (1)/( t_(r )) equals :

    A
    `(n+1)/( n )`
    B
    `( n )/( n + 1)`
    C
    `(n-1)/( n ) `
    D
    `( n )/(n-1)`
  • If x^(2)-x+1=0 then the value of sum_(n=1)^(5)(x^(n)+(1)/(x^(n)))^(2) is

    A
    10
    B
    8
    C
    6
    D
    4
  • If 1+x^(2)=sqrt(3)x , then sum_(n=1)^(24)(x^(n)-(1)/(x^(n)))^(2) equals

    A
    `48`
    B
    `-24`
    C
    `+-48(omega-omega^(2))`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    lim_(n rarr oo) sum_(r=1)^(n) 1/n sec^(2) ((rpi)/(4n)) =

    If sum_(r=1)^(prop) t_(r ) = ( n (n +1) ( n + 2) ( n + 3))/( 8 ) , where t_(r ) denotes the rth term of a seires, then underset( n rarr prop ) ( "lim") sum_(r = 1) ^(prop ) (1)/( t_(r )) is :

    lim_(n to oo) sum_(r = 1)^(n) 1/n sin(r pi)/(2pi) is :

    lim_(n rarr oo) sum_(r=0)^(n-1) 1/(sqrt(n^(2)-r^(2))) =

    The value of the sum sum_(n=1) ^(13) (i^(n)+i^(n+1)) , where i = sqrt( - 1) ,equals :