Home
Class 12
MATHS
Solve the equation for x: sin^(-1) x+sin...

Solve the equation for x: `sin^(-1) x+sin^(-1) (1-x)=cos^(-1) x, x ne 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1} x + \sin^{-1} (1-x) = \cos^{-1} x \) where \( x \neq 0 \), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \sin^{-1} x + \sin^{-1} (1-x) = \cos^{-1} x \] ### Step 2: Use the identity for cosine inverse Recall that: \[ \cos^{-1} a = \frac{\pi}{2} - \sin^{-1} a \] Applying this identity, we can rewrite the equation as: \[ \sin^{-1} x + \sin^{-1} (1-x) = \frac{\pi}{2} - \sin^{-1} x \] ### Step 3: Rearranging the equation Now, we can rearrange the equation by moving \( \sin^{-1} x \) to the left side: \[ \sin^{-1} (1-x) = \frac{\pi}{2} - 2 \sin^{-1} x \] ### Step 4: Let \( \sin^{-1} x = \alpha \) Let \( \sin^{-1} x = \alpha \). Then, we have: \[ x = \sin \alpha \] Substituting this into our equation gives: \[ \sin^{-1} (1 - \sin \alpha) = \frac{\pi}{2} - 2\alpha \] ### Step 5: Use the sine identity We know that: \[ \sin\left(\frac{\pi}{2} - \theta\right) = \cos \theta \] Thus, we can rewrite the left side: \[ 1 - \sin \alpha = \sin\left(\frac{\pi}{2} - 2\alpha\right) = \cos(2\alpha) \] ### Step 6: Express \( \cos(2\alpha) \) Using the double angle formula for cosine: \[ \cos(2\alpha) = 1 - 2\sin^2 \alpha \] Substituting \( \sin \alpha = x \): \[ \cos(2\alpha) = 1 - 2x^2 \] ### Step 7: Set up the equation Now we have: \[ 1 - \sin \alpha = 1 - 2x^2 \] Substituting \( \sin \alpha = x \): \[ 1 - x = 1 - 2x^2 \] ### Step 8: Simplify the equation Cancelling \( 1 \) from both sides gives: \[ -x = -2x^2 \] Rearranging this leads to: \[ 2x^2 - x = 0 \] ### Step 9: Factor the equation Factoring out \( x \): \[ x(2x - 1) = 0 \] ### Step 10: Solve for \( x \) This gives us two solutions: 1. \( x = 0 \) 2. \( 2x - 1 = 0 \) which simplifies to \( x = \frac{1}{2} \) Since the problem states \( x \neq 0 \), we discard \( x = 0 \). ### Final Solution Thus, the solution is: \[ x = \frac{1}{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATHEMATICS -2017

    ICSE|Exercise Section-B|10 Videos
  • MATHEMATICS - 2014

    ICSE|Exercise Section-C|6 Videos
  • MATHEMATICS SPECIMEN QUESTION PAPER

    ICSE|Exercise SECTION C|8 Videos

Similar Questions

Explore conceptually related problems

Solve the equation of x:sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

Solve the equation of x:sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

Solve the following equation: sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

Solve the following equation: sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

Solve sin^(-1) x + sin^(-1) (1 - x) = cos^(-1) x

If sin^(-1)x+sin^(-1)(1-x)+cos^(-1)x=0 , then x is

Solve the equation for x : "sin"^(-1)(5)/(x)+"sin"^(-1)(12)/(x)=(pi)/(2), x ne 0 .

solve sin^(-1) x le cos^(-1) x

Solve the equation sin^(2)x + cos^(2)3x=1

Solve : 4sin^(-1)x=pi-cos^(-1)x