Home
Class 12
MATHS
Evaluate int (sin 2x)/((1+sin x)(2+sin x...

Evaluate `int (sin 2x)/((1+sin x)(2+sin x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{\sin 2x}{(1 + \sin x)(2 + \sin x)} \, dx, \] we can follow these steps: ### Step 1: Rewrite the Integral We know that \(\sin 2x = 2 \sin x \cos x\). Therefore, we can rewrite the integral as: \[ I = \int \frac{2 \sin x \cos x}{(1 + \sin x)(2 + \sin x)} \, dx. \] ### Step 2: Substitution Let \(t = \sin x\). Then, \(dt = \cos x \, dx\), which means \(dx = \frac{dt}{\cos x}\). We can also express \(\cos x\) in terms of \(t\) using the identity \(\cos^2 x = 1 - \sin^2 x\), so \(\cos x = \sqrt{1 - t^2}\). Substituting these into the integral gives: \[ I = \int \frac{2t \sqrt{1 - t^2}}{(1 + t)(2 + t)} \, dt. \] ### Step 3: Partial Fraction Decomposition Next, we will perform partial fraction decomposition on the integrand: \[ \frac{2t}{(1 + t)(2 + t)} = \frac{A}{1 + t} + \frac{B}{2 + t}. \] Multiplying through by the denominator \((1 + t)(2 + t)\) gives: \[ 2t = A(2 + t) + B(1 + t). \] ### Step 4: Solve for A and B Expanding the right side: \[ 2t = (2A + B) + (A + B)t. \] By comparing coefficients, we have: 1. \(A + B = 2\) (coefficient of \(t\)) 2. \(2A + B = 0\) (constant term) From the first equation, we can express \(B\) in terms of \(A\): \[ B = 2 - A. \] Substituting into the second equation: \[ 2A + (2 - A) = 0 \implies A + 2 = 0 \implies A = -2. \] Then substituting back to find \(B\): \[ B = 2 - (-2) = 4. \] Thus, we have: \[ \frac{2t}{(1 + t)(2 + t)} = \frac{-2}{1 + t} + \frac{4}{2 + t}. \] ### Step 5: Substitute Back into the Integral Now we can rewrite the integral: \[ I = \int \left( \frac{-2}{1 + t} + \frac{4}{2 + t} \right) \sqrt{1 - t^2} \, dt. \] ### Step 6: Integrate Now we can integrate term by term: 1. The integral of \(\frac{-2}{1 + t}\) is \(-2 \ln |1 + t|\). 2. The integral of \(\frac{4}{2 + t}\) is \(4 \ln |2 + t|\). Thus, we have: \[ I = -2 \ln |1 + t| + 4 \ln |2 + t| + C. \] ### Step 7: Substitute Back for \(t\) Since \(t = \sin x\), we substitute back to get: \[ I = 4 \ln |2 + \sin x| - 2 \ln |1 + \sin x| + C. \] ### Final Answer Thus, the evaluated integral is: \[ \int \frac{\sin 2x}{(1 + \sin x)(2 + \sin x)} \, dx = 4 \ln |2 + \sin x| - 2 \ln |1 + \sin x| + C. \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATHEMATICS -2017

    ICSE|Exercise Section-B|10 Videos
  • MATHEMATICS - 2014

    ICSE|Exercise Section-C|6 Videos
  • MATHEMATICS SPECIMEN QUESTION PAPER

    ICSE|Exercise SECTION C|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(sin2x)/((1+sinx)(2+sinx))dx

Evaluate: int(sin2x)/((1+sinx)(2+sinx)\ dx

int sin 2x dx

int (sin2x) dx/(1+sin^4x)

Evaluate int e^(2x) ((1+ sin 2x)/(1+cos 2x))dx

Evaluate: int(1+sin2x)/(x+sin^2x)dx

Evaluate : int (" sin 2 x ") /(" sin 5x. sin 3x ") "dx "

Evaluate: int(2sin2x) \ dx

evaluate int(sin2x- 2x)\dx

Evaluate: int(sin2x)/(sqrt(sin^4x+4sin^2x-2))dx