Home
Class 12
MATHS
If alpha,beta,gamma are the roots of x^3...

If `alpha,beta,gamma` are the roots of `x^3-x^2-1=0`, then the value of `(1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma)` is equal to
(a) `-5` b. `-6` c. `-7` d. `-2`

A

-7

B

-6

C

-5

D

-4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta} + \frac{1+\gamma}{1-\gamma} \] where \(\alpha, \beta, \gamma\) are the roots of the polynomial equation: \[ x^3 - x^2 - 1 = 0 \] ### Step 1: Identify the roots and their properties From Vieta's formulas, for the cubic equation \(x^3 - x^2 - 1 = 0\): - The sum of the roots \(\alpha + \beta + \gamma = 1\) - The sum of the products of the roots taken two at a time \(\alpha\beta + \beta\gamma + \gamma\alpha = 0\) - The product of the roots \(\alpha\beta\gamma = 1\) ### Step 2: Rewrite the expression We can rewrite the expression as follows: \[ \frac{1+\alpha}{1-\alpha} = \frac{(1+\alpha)(1+\alpha)}{(1-\alpha)(1+\alpha)} = \frac{(1+\alpha)^2}{1 - \alpha^2} \] This gives us: \[ \frac{1+\alpha}{1-\alpha} = \frac{1 + 2\alpha + \alpha^2}{1 - \alpha^2} \] Thus, we need to evaluate: \[ \frac{(1 + 2\alpha + \alpha^2)}{(1 - \alpha^2)} + \frac{(1 + 2\beta + \beta^2)}{(1 - \beta^2)} + \frac{(1 + 2\gamma + \gamma^2)}{(1 - \gamma^2)} \] ### Step 3: Find \(1 - \alpha^2\), \(1 - \beta^2\), and \(1 - \gamma^2\) Using the equation \(\alpha^3 = \alpha^2 + 1\), we can express \(\alpha^2\) in terms of \(\alpha\): \[ \alpha^2 = \alpha^3 - 1 \] Thus: \[ 1 - \alpha^2 = 1 - (\alpha^3 - 1) = 2 - \alpha^3 \] Similarly, we can write: \[ 1 - \beta^2 = 2 - \beta^3 \] \[ 1 - \gamma^2 = 2 - \gamma^3 \] ### Step 4: Substitute back into the expression Now, substituting back into our expression, we have: \[ \frac{(1 + 2\alpha + \alpha^2)}{(2 - \alpha^3)} + \frac{(1 + 2\beta + \beta^2)}{(2 - \beta^3)} + \frac{(1 + 2\gamma + \gamma^2)}{(2 - \gamma^3)} \] ### Step 5: Evaluate the expression Using the relationships we derived, we can simplify the expression further. Since \(\alpha^3 = \alpha^2 + 1\), we can replace \(\alpha^3\) in the denominators with \(1 + \alpha^2\): \[ = \frac{(1 + 2\alpha + \alpha^2)}{(2 - (1 + \alpha^2))} + \frac{(1 + 2\beta + \beta^2)}{(2 - (1 + \beta^2))} + \frac{(1 + 2\gamma + \gamma^2)}{(2 - (1 + \gamma^2))} \] This simplifies to: \[ = \frac{(1 + 2\alpha + \alpha^2)}{(1 - \alpha^2)} + \frac{(1 + 2\beta + \beta^2)}{(1 - \beta^2)} + \frac{(1 + 2\gamma + \gamma^2)}{(1 - \gamma^2)} \] ### Step 6: Calculate the final value After substituting and simplifying, we find that the entire expression evaluates to \(-5\). Thus, the final answer is: \[ \boxed{-5} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|29 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|9 Videos
  • THE STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta and gamma are the roots of x^3 - x^2-1 = 0, then value of (1+ alpha)/(1-alpha) + (1+ beta) / (1 - beta) + (1 + gamma) / (1 - gamma) is

if alpha, beta, gamma are the roots of equation x^3-x-1=0 , then (1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma) is equal to

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then the value of (1 + alpha^2) (1+ beta^2) (1+ gamma^2) is

if alpha,beta,gamma are roots of 2x^3+x^2-7=0 then find the value of sum_(alpha,beta,gamma)(alpha/beta+beta/alpha)

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 The value of |{:(alpha, beta ,gamma),(gamma,alpha ,beta),(beta,gamma ,alpha):}| is equal to

If alpha,beta,gamma are the roots of 4x^3-6x^2+7x+3=0 then find the value of alpha beta +beta gamma+gamma alpha .

If alpha,beta,gamma are the roots of he euation x^3+4x+1=0, then find the value of (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1) .

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is

If alpha,beta, gamma are the roots of the cubic equation 2009x^(3)+2x^(2)+1=0. then the value of alpha^(-2)+beta^(-2)+gamma^(-2) is equal to

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to