Home
Class 12
MATHS
if .^(2n)C(2):^(n)C(2)=9:2 and .^(n)C(r)...

if `.^(2n)C_(2):^(n)C_(2)=9:2 and .^(n)C_(r)=10`, then r is equal to

A

2

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( r \) given the equations: \[ \frac{{^{2n}C_{2}}}{{^{n}C_{2}}} = \frac{9}{2} \] and \[ ^{n}C_{r} = 10. \] ### Step 1: Express the combinations We start by expressing the combinations in terms of factorials. The combination formula is given by: \[ ^{n}C_{r} = \frac{n!}{r!(n-r)!}. \] Thus, we can write: \[ ^{2n}C_{2} = \frac{(2n)!}{2!(2n-2)!} \] and \[ ^{n}C_{2} = \frac{n!}{2!(n-2)!}. \] ### Step 2: Set up the equation Substituting these into the ratio gives us: \[ \frac{\frac{(2n)!}{2!(2n-2)!}}{\frac{n!}{2!(n-2)!}} = \frac{9}{2}. \] ### Step 3: Simplify the equation This simplifies to: \[ \frac{(2n)!}{(2n-2)!} \cdot \frac{(n-2)!}{n!} = \frac{9}{2}. \] ### Step 4: Further simplify Now, we can express \( (2n)! \) as: \[ (2n)! = (2n)(2n-1)(2n-2)! \] Thus, our equation becomes: \[ \frac{(2n)(2n-1)(2n-2)!}{(2n-2)!} \cdot \frac{(n-2)!}{n!} = \frac{9}{2}. \] This simplifies to: \[ \frac{(2n)(2n-1)}{n(n-1)} = \frac{9}{2}. \] ### Step 5: Cross-multiply and solve for \( n \) Cross-multiplying gives: \[ 2(2n)(2n-1) = 9n(n-1). \] Expanding both sides: \[ 8n^2 - 4n = 9n^2 - 9n. \] Rearranging gives: \[ 9n^2 - 8n^2 - 9n + 4n = 0 \implies n^2 - 5n = 0. \] Factoring out \( n \): \[ n(n - 5) = 0. \] Thus, \( n = 0 \) or \( n = 5 \). Since \( n \) must be a positive integer, we have \( n = 5 \). ### Step 6: Use \( n \) to find \( r \) Now, we know \( n = 5 \) and we need to find \( r \) such that: \[ ^{5}C_{r} = 10. \] ### Step 7: Solve for \( r \) We know that: \[ ^{5}C_{2} = \frac{5!}{2!(5-2)!} = \frac{5 \times 4}{2 \times 1} = 10. \] Thus, \( r = 2 \). ### Final Answer The value of \( r \) is: \[ \boxed{2}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|18 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|26 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|11 Videos
  • PARABOLA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|36 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos

Similar Questions

Explore conceptually related problems

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

""^(n)C_(r)+2""^(n)C_(r-1)+^(n)C_(r-2) is equal to

STATEMENT - 1 : If .^(2n+1)C_(1) + .^(2n+1)C_(2)+………+ .^(2n+1)C_(n)= 4095 , then n = 7 STATEMENT - 2 : .^(n)C_(r )= .^(n)C_(n-r) where n epsilon N, r epsilon W and n ge r

Let n be a positive integer and (1+x)^(n)+C_(0)+C_(1)x+C_(2)x^(2)+C_(3)x^(3)+ . . .+C_(r)x^(r)+ . . .+C_(n-1)x^(n-1)+C_(n)x^(n) Where C_(r) stands for .^(n)C_(r) , then Q. The value of underset(r=0)overset(n)(sum)underset(s=0)overset(n)(sum),C_(r),C_(S) is

Let n be a positive integer and (1+x)^(n)+C_(0)+C_(1)x+C_(2)x^(2)+C_(3)x^(3)+ . . .+C_(r)x^(r)+ . . .+C_(n-1)x^(n-1)+C_(n)x^(n) Where C_(r) stands for .^(n)C_(r) , then Q. The values of underset(r=0)overset(n)(sum)underset(s=0)overset(n)(sum)(C_(r)+C_(S)) is

If ""^(n)C_(r -1) = 36, ""^(n)C_(r) = 84 " and " ""^(n)C_(r +1) = 126 , then find the value of ""^(r)C_(2) .

The vaule of sum_(r=0)^(n-1) (""^(C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1)) is equal to