Home
Class 12
MATHS
The values of ba n dc for which the iden...

The values of `ba n dc` for which the identity of `f(x+1)-f(x)=8x+3` is satisfied, where `f(x)=b x^2+c x+d ,a r e` `b=2,c=1` (b) `b=4,c=-1` `b=-1, c=4` (d) `b=-1,c=1`

A

b = 2, c = 1

B

b = 4, c = - 1

C

b = - 1, c = 4

D

b = - 1, c = 1

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|3 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|10 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • THE STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos

Similar Questions

Explore conceptually related problems

If f(x) =ax^(2) + bx + c satisfies the identity f(x+1) -f(x)= 8x+ 3 for all x in R Then (a,b)=

The number of points at which g(x)=1/(1+2/(f(x))) is not differentiable, where f(x)=1/(1+1/x) , is a. 1 b. 2 c. 3 d. 4

Ifintxe^xcosx dx=a e^x(b(1-x)sinx+c xcosx)+d ,t h e n (a) a=1,b=1,c=-1 (b) a=1/2,b=-,c=1 (c) a=1,b=-1,c=1 (d) a=1/2, b=1,c=-1

Let f(x)={(x-4)/(|x-4|a+b)+a ,x 0 Then, f(x) is continuous at x=4 when (a) a=0,b=0 (b) a=1,b=1 (c) a=-1,b=1 (d) a=1,b=-1

If f(x)=cos(logx), then value of f(x) f(4)-1/2{f(x/4)+f(4x)} is (a) 1 (b) -1 (c) 0 (d) +- 1

If the polynomial f(x)=a x^3+b x-c is divisible by the polynomial g(x)=x^2+b x+c , then a b= (a) 1 (b) 1/c (c) -1 (d) -1/c

If the solution set of the inequaiton (x+4)(x-1)(x-3)(x+1)<0 is x in (a , b)uu(c , d) then (a) a+b+c+d=1 (b) a+b+c+d=2 (c) a b c d=12 (d) a b+c d=7

If f(x)=|(log)_e x| , then (a) f'(1^+)=1 (b) f^'(1^(-))=-1 (c) f'(1)=1 (d) f'(1)=-1

If f(x+1/2)+f(x-1/2)=f(x)fora l lx in R , then the period of f(x) is 1 (b) 2 (c) 3 (d) 4

If f(x+1/2)+f(x-1/2)=f(x)fora l lx in R , then the period of f(x) is (a) 1 (b) 2 (c) 3 (d) 4