Home
Class 12
MATHS
Show that (sinx-siny)/(cosx+cosy)=tan((x...

Show that `(sinx-siny)/(cosx+cosy)=tan((x-y)/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To show that \[ \frac{\sin x - \sin y}{\cos x + \cos y} = \tan\left(\frac{x - y}{2}\right), \] we will start with the left-hand side (LHS) and manipulate it to reach the right-hand side (RHS). ### Step 1: Use the sine difference formula We know that \[ \sin x - \sin y = 2 \cos\left(\frac{x + y}{2}\right) \sin\left(\frac{x - y}{2}\right). \] So, we can rewrite the LHS as: \[ \frac{\sin x - \sin y}{\cos x + \cos y} = \frac{2 \cos\left(\frac{x + y}{2}\right) \sin\left(\frac{x - y}{2}\right)}{\cos x + \cos y}. \] ### Step 2: Use the cosine sum formula We also know that \[ \cos x + \cos y = 2 \cos\left(\frac{x + y}{2}\right) \cos\left(\frac{x - y}{2}\right). \] Now, we can substitute this into our expression: \[ = \frac{2 \cos\left(\frac{x + y}{2}\right) \sin\left(\frac{x - y}{2}\right)}{2 \cos\left(\frac{x + y}{2}\right) \cos\left(\frac{x - y}{2}\right)}. \] ### Step 3: Simplify the expression The \(2 \cos\left(\frac{x + y}{2}\right)\) terms in the numerator and denominator cancel out (assuming \(\cos\left(\frac{x + y}{2}\right) \neq 0\)): \[ = \frac{\sin\left(\frac{x - y}{2}\right)}{\cos\left(\frac{x - y}{2}\right)}. \] ### Step 4: Recognize the tangent function The expression \[ \frac{\sin\left(\frac{x - y}{2}\right)}{\cos\left(\frac{x - y}{2}\right)} \] is the definition of the tangent function: \[ = \tan\left(\frac{x - y}{2}\right). \] ### Conclusion Thus, we have shown that \[ \frac{\sin x - \sin y}{\cos x + \cos y} = \tan\left(\frac{x - y}{2}\right), \] which completes the proof. ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|25 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|8 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

prove (sinx-siny)/(cosx+cosy)=tan(x-y)/2

Prove that: (sinx-siny)/(cosx+cosy) =tan (x-y)/2

Show that (1-cosx)/sinx = sinx/(1+cosx)

For x,yepsilonR with 0 lt x lt (pi)/2 such that ((sinx)^(2y))/((cosx)^((y^(2))/2))+((cosx)^(2y))/((sinx)^((y^(2))/2))=sin2x , then y is ________.

Prove that: (cosx-cosy)^2+(sinx-siny)^2=4sin^2 (x-y)/2

If x , y , z are in A.P., then (sinx-sinz)/(cosz-cosx) is equal to (a) tany (b) coty (c) siny (d) cosy

If x , y , z are in A.P., then (sinx-sinz)/(cosz-cosx) is equal to (a) tany (b) coty (c) siny (d) coty

Prove that: (cosx+cosy)^2+(sinx-siny)^2 =4cos^2 (x+y)/2

If cosx+cosy+cosalpha=0 and sinx+siny+sinalpha=0 then cot((x+y)/2)=

If (sinx)/(siny)=1/2,(cosx)/(cosy)=3/2 , where x , y , in (0,pi/2), then the value of "tan"(x+y) is equal to (a) sqrt(13) (b) sqrt(14) (c) sqrt(17) (d) sqrt(15)