Home
Class 12
MATHS
bb"statement-1" " Let " z(1),z(2) " and ...

`bb"statement-1" " Let " z_(1),z_(2) " and " z_(3)` be htree complex numbers, such that `abs(3z_(1)+1)=abs(3z_(2)+1)=abs(3z_(3)+1) " and " 1+z_(1)+z_(2)+z_(3)=0, " then " z_(1),z_(2),z_(3)` will represent vertices of an equilateral triangle on the complex plane.
`bb"statement-2" z_(1),z_(2),z_(3)` represent vertices of an triangle, if
`z_(1)^(2)+z_(2)^(2)+z_(3)^(2)+z_(1)z_(2)+z_(2)z_(3)+z_(3)z_(1)=0`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|12 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 7|11 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|5 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

If z_(1)=1+2i, z_(2)=2+3i, z_(3)=3+4i , then z_(1),z_(2) and z_(3) represent the vertices of a/an.

If the complex numbers z_(1), z_(2), z_(3) represent the vertices of an equilateral triangle, and |z_(1)|= |z_(2)| = |z_(3)| , prove that z_(1)+ z_(2) + z_(3)=0

Complex numbers z_(1),z_(2),z_(3) are the vertices of A,B,C respectively of an equilteral triangle. Show that z_(1)^(2)+z_(2)^(2)+z_(3)^(2)=z_(1)z_(2)+z_(2)z_(3)+z_(3)z_(1).

If z_(1) and z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1 , then

Let A(z_(1)),B(z_(2)),C(z_(3)) be the vertices of an equilateral triangle ABC in the Argand plane, then the number (z_(2)-z_(3))/(2z_(1)-z_(2)-z_(3)) , is

If z_(1),z_(2), z_(3) are vertices of an equilateral triangle with z_(0) its centroid, then z_(1)^(2)+z_(2)^(2)+z_(3)^(2)=

If A(z_(1)),B(z_(2)), C(z_(3)) are the vertices of an equilateral triangle ABC, then arg (2z_(1)-z_(2)-z_(3))/(z_(3)_z_(2))=

Let z_(1) and z_(2) be two given complex numbers such that z_(1)/z_(2) + z_(2)/z_(1)=1 and |z_(1)| =3 , " then " |z_(1)-z_(2)|^(2) is equal to

Let z_(1) and z_(2) be any two non-zero complex numbers such that 3|z_(1)|=2|z_(2)|. "If "z=(3z_(1))/(2z_(2)) + (2z_(2))/(3z_(1)) , then

Let z_(1),z_(2) be two complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| . Then,