Home
Class 12
MATHS
If f(x)=|{:(x,x^(2),x^(3)),(1,2,3),(0,1,...

If f(x)=`|{:(x,x^(2),x^(3)),(1,2,3),(0,1,x):}|` `underset(x to1)limf(x)` is equal to

A

-1

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by: \[ f(x) = \begin{vmatrix} x & x^2 & x^3 \\ 1 & 2 & 3 \\ 0 & 1 & x \end{vmatrix} \] and then find the limit as \( x \) approaches 1. ### Step 1: Calculate the Determinant We will use the determinant formula for a 3x3 matrix: \[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: - \( a = x \), \( b = x^2 \), \( c = x^3 \) - \( d = 1 \), \( e = 2 \), \( f = 3 \) - \( g = 0 \), \( h = 1 \), \( i = x \) Substituting these values into the determinant formula: \[ f(x) = x \begin{vmatrix} 2 & 3 \\ 1 & x \end{vmatrix} - x^2 \begin{vmatrix} 1 & 3 \\ 0 & x \end{vmatrix} + x^3 \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} \] ### Step 2: Calculate the 2x2 Determinants 1. For the first determinant: \[ \begin{vmatrix} 2 & 3 \\ 1 & x \end{vmatrix} = (2 \cdot x) - (3 \cdot 1) = 2x - 3 \] 2. For the second determinant: \[ \begin{vmatrix} 1 & 3 \\ 0 & x \end{vmatrix} = (1 \cdot x) - (3 \cdot 0) = x \] 3. For the third determinant: \[ \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = (1 \cdot 1) - (2 \cdot 0) = 1 \] ### Step 3: Substitute Back into the Determinant Expression Now substituting back into the expression for \( f(x) \): \[ f(x) = x(2x - 3) - x^2(x) + x^3(1) \] This simplifies to: \[ f(x) = x(2x - 3) - x^3 + x^3 \] The \( -x^3 \) and \( +x^3 \) cancel out: \[ f(x) = 2x^2 - 3x \] ### Step 4: Find the Limit as \( x \to 1 \) Now we need to evaluate: \[ \lim_{x \to 1} f(x) = \lim_{x \to 1} (2x^2 - 3x) \] Substituting \( x = 1 \): \[ f(1) = 2(1)^2 - 3(1) = 2 - 3 = -1 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 1} f(x) = -1 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|23 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|11 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|13 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(x,xlt1),(x-1,xge1):} , then underset(0)overset(2)intx^(2)f(x) dx is equal to :

If f(x )=sqrt(25-x^(2)) , then what is underset(xto1)lim(f(x)-f(1))/(x-1) equal to

If f(x)=x^3+2x^2+3x+4 and g(x) is the inverse of f(x) then g^(prime)(4) is equal to- 1/4 (b) 0 (c) 1/3 (d) 4

If f(x)=x^3+2x^2+3x+4 and g(x) is the inverse of f(x) then g^(prime)(4) is equal to- 1/4 (b) 0 (c) 1/3 (d) 4

f(x)= |{:(cos x,,x,,1),(2sin x ,,x^(2),,2x),(tanx ,, x,,1):}| then find the value of underset(xto 0)(" lim ") (f(x))/(x)

f(x) = sin^(-1)x+x^(2)-3x + (x^(3))/(3),x in[0,1]

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x) = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5) , then the value of f' (5) is equal to

If y=f(x) is solution of differentiable equation (dy)/(dx)=y/x((1-3x^(2)y^(3)))/((2x^(2)y^(3)+1)) , then ( f(x).x)^(3) is equal to