Home
Class 12
MATHS
Vertices of a variable triangle are (3, ...

Vertices of a variable triangle are `(3, 4), (5 cos theta, 5 sin theta)` and `(5 sin theta, -5 cos theta)`, where `theta in R`. Locus of its orthocentre is

A

`x^(2)+y^(2)+6x+8y-25=0`

B

`x^(2)+y^(2)-6x+8y-25=0`

C

`x^(2)+y^(2)+6x-8y-25=0`

D

`x^(2)+y^(2)-6x-8y-25=0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the locus of the orthocenter of the triangle with vertices at \( A(3, 4) \), \( B(5 \cos \theta, 5 \sin \theta) \), and \( C(5 \sin \theta, -5 \cos \theta) \), we can follow these steps: ### Step 1: Identify the coordinates of the vertices The vertices of the triangle are given as: - \( A(3, 4) \) - \( B(5 \cos \theta, 5 \sin \theta) \) - \( C(5 \sin \theta, -5 \cos \theta) \) ### Step 2: Find the circumcenter We can observe that the circumradius (distance from the circumcenter to each vertex) is the same for all vertices. The distance from the origin \( O(0, 0) \) to each vertex can be calculated as follows: - Distance \( OA = \sqrt{(3 - 0)^2 + (4 - 0)^2} = \sqrt{9 + 16} = 5 \) - Distance \( OB = \sqrt{(5 \cos \theta - 0)^2 + (5 \sin \theta - 0)^2} = \sqrt{25 (\cos^2 \theta + \sin^2 \theta)} = 5 \) - Distance \( OC = \sqrt{(5 \sin \theta - 0)^2 + (-5 \cos \theta - 0)^2} = \sqrt{25 (\sin^2 \theta + \cos^2 \theta)} = 5 \) Since \( OA = OB = OC = 5 \), the circumcenter \( O \) is at the origin \( (0, 0) \). ### Step 3: Find the centroid The coordinates of the centroid \( G \) of triangle \( ABC \) can be calculated using the formula: \[ G\left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right) \] Substituting the coordinates of the vertices: \[ G\left( \frac{3 + 5 \cos \theta + 5 \sin \theta}{3}, \frac{4 + 5 \sin \theta - 5 \cos \theta}{3} \right) \] ### Step 4: Use the relationship between the orthocenter, centroid, and circumcenter The orthocenter \( H \) divides the line segment \( GO \) in the ratio \( 2:1 \). Therefore, we can express \( G \) in terms of \( H \) and \( O \): \[ G = \frac{1H + 2O}{1 + 2} \] Since \( O(0, 0) \), we have: \[ G = \frac{1H + 2(0, 0)}{3} = \frac{H}{3} \] Thus, we can write: \[ G = \left( \frac{x}{3}, \frac{y}{3} \right) \] ### Step 5: Set up equations for \( H \) From the coordinates of \( G \): \[ \frac{x}{3} = \frac{3 + 5 \cos \theta + 5 \sin \theta}{3} \quad \text{and} \quad \frac{y}{3} = \frac{4 + 5 \sin \theta - 5 \cos \theta}{3} \] This leads to: \[ x = 3 + 5 \cos \theta + 5 \sin \theta \] \[ y = 4 + 5 \sin \theta - 5 \cos \theta \] ### Step 6: Rearranging the equations Rearranging gives: \[ x - 3 = 5 \cos \theta + 5 \sin \theta \] \[ y - 4 = 5 \sin \theta - 5 \cos \theta \] ### Step 7: Square both equations and add Squaring both equations: \[ (x - 3)^2 = 25(\cos \theta + \sin \theta)^2 \] \[ (y - 4)^2 = 25(\sin \theta - \cos \theta)^2 \] Adding these: \[ (x - 3)^2 + (y - 4)^2 = 25 \left( (\cos \theta + \sin \theta)^2 + (\sin \theta - \cos \theta)^2 \right) \] Using the identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ = 25 \left( 1 + 1 \right) = 50 \] ### Step 8: Final equation Thus, we have: \[ (x - 3)^2 + (y - 4)^2 = 50 \] ### Step 9: Rearranging to standard form Expanding and rearranging gives: \[ x^2 + y^2 - 6x - 8y - 25 = 0 \] ### Conclusion The locus of the orthocenter is given by the equation: \[ x^2 + y^2 - 6x - 8y - 25 = 0 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|7 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|5 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|17 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos

Similar Questions

Explore conceptually related problems

The diameter of the nine point circle of the triangle with vertices (3, 4), (5 cos theta, 5 sin theta) and (5 sin theta, -5 cos theta) , where theta in R , is

The area of the triangle with vertices (a, 0), (a cos theta, b sin theta), (a cos theta, -b sin theta) is

Knowledge Check

  • sin^(3)theta + sin theta - sin theta cos^(2)theta =

    A
    0
    B
    `sin theta`
    C
    `sin 2 theta`
    D
    `2sin^(3)theta`
  • Similar Questions

    Explore conceptually related problems

    If the coordinates of a variable point be (cos theta + sin theta, sin theta - cos theta) , where theta is the parameter, then the locus of P is

    Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

    Let A(5, 12), B(-13 costheta, 13 sin theta) and C(13 sin theta, -13 cos theta) are angular points of ABC where theta in R . The locus of orthocentre of DeltaABC is

    If 3 sin theta+5 cos theta = 5 , show that: 5 sin theta - 3 cos theta = +-3

    If 5 cos theta = 6 , sin theta , evalutate : (12 sin theta - 3cos theta)/(12 sin theta + 3 cos theta)

    If cos 3theta+sin3theta+(2sin2theta-3)(sin theta-cos theta)gt0 , then theta lies in

    If 5 cos theta = 6 , sin theta , evalutate : tan theta