Home
Class 12
MATHS
Evaluate lim(xto0)(int(0)^(x^(2))cos^(2)...

Evaluate `lim_(xto0)(int_(0)^(x^(2))cos^(2)tdt)/(x sin x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\int_{0}^{x^2} \cos^2 t \, dt}{x \sin x}, \] we can follow these steps: ### Step 1: Identify the form of the limit As \( x \to 0 \), both the numerator and denominator approach 0. Thus, we have the indeterminate form \( \frac{0}{0} \). **Hint:** Check if the limit results in an indeterminate form before proceeding with L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Since we have the \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the derivative of the denominator. The numerator is \( \int_{0}^{x^2} \cos^2 t \, dt \). By the Fundamental Theorem of Calculus and the chain rule, we differentiate it: \[ \frac{d}{dx} \left( \int_{0}^{x^2} \cos^2 t \, dt \right) = \cos^2(x^2) \cdot \frac{d}{dx}(x^2) = \cos^2(x^2) \cdot 2x. \] The denominator is \( x \sin x \). We differentiate it using the product rule: \[ \frac{d}{dx}(x \sin x) = \sin x + x \cos x. \] ### Step 3: Rewrite the limit using derivatives Now we can rewrite the limit as: \[ \lim_{x \to 0} \frac{2x \cos^2(x^2)}{\sin x + x \cos x}. \] **Hint:** Remember to differentiate both the numerator and denominator separately when applying L'Hôpital's Rule. ### Step 4: Simplify the limit Now we can substitute \( x = 0 \) into the new limit. First, we evaluate the numerator: \[ 2x \cos^2(x^2) \to 2(0) \cos^2(0) = 0. \] Next, we evaluate the denominator: \[ \sin(0) + 0 \cdot \cos(0) = 0 + 0 = 0. \] We again have the \( \frac{0}{0} \) form, so we apply L'Hôpital's Rule again. ### Step 5: Differentiate again We differentiate the numerator and denominator again: - For the numerator \( 2x \cos^2(x^2) \): Using the product rule: \[ \frac{d}{dx}(2x \cos^2(x^2)) = 2 \cos^2(x^2) + 2x \cdot 2\cos(x^2)(-\sin(x^2) \cdot 2x) = 2 \cos^2(x^2) - 8x^2 \cos(x^2) \sin(x^2). \] - For the denominator \( \sin x + x \cos x \): Using the product rule again: \[ \frac{d}{dx}(\sin x + x \cos x) = \cos x + (\cos x - x \sin x) = 2\cos x - x \sin x. \] ### Step 6: Rewrite the limit again Now we have: \[ \lim_{x \to 0} \frac{2 \cos^2(x^2) - 8x^2 \cos(x^2) \sin(x^2)}{2\cos x - x \sin x}. \] ### Step 7: Evaluate the limit Substituting \( x = 0 \): - The numerator becomes: \[ 2 \cos^2(0) - 8(0)^2 \cos(0) \sin(0) = 2(1) - 0 = 2. \] - The denominator becomes: \[ 2\cos(0) - 0 \cdot \sin(0) = 2(1) - 0 = 2. \] Thus, we have: \[ \lim_{x \to 0} \frac{2}{2} = 1. \] ### Final Answer The limit is \[ \boxed{1}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (e^(x^(2))-cosx)/(x^(2))

Evaluate lim_(xto0^(+))(sinx)^(x)

Evaluate lim_(xto0)|x|^(sinx)

Evaluate lim_(xto0) (sinx-x)/(x^(3)).

Evaluate lim_(xto0)(x-(int_(0)^(x)costdt))/(x^(3)-6x)

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate : lim_(xto0) (a^(x)-b^(x))/x

Evaluate lim_(xto0)(cosecx)^(x) .

Evaluate lim_(xto0)(tan2x-sin2x)/(x^(3))

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).