Home
Class 12
MATHS
If lim(xtoa)f(x)=1 and lim(xtoa)g(x)=oo ...

If `lim_(xtoa)f(x)=1` and `lim_(xtoa)g(x)=oo` then `lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x))`
`lim_(xto0)((sinx)/x)^((sinx)/(x-sinx))` is equal to

A

(a) `1//e`

B

(b) `-1//e`

C

(c) `e`

D

(d) `-e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we will follow the steps outlined in the video transcript. The goal is to find the limit: \[ \lim_{x \to 0} \left( \frac{\sin x}{x} \right)^{\left( \frac{\sin x}{x - \sin x} \right)} \] ### Step 1: Identify \( f(x) \) and \( g(x) \) Let: - \( f(x) = \frac{\sin x}{x} \) - \( g(x) = \frac{\sin x}{x - \sin x} \) ### Step 2: Find \( \lim_{x \to 0} f(x) \) We know from standard limits that: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] Thus, we have: \[ \lim_{x \to 0} f(x) = 1 \] ### Step 3: Find \( \lim_{x \to 0} g(x) \) Next, we need to evaluate \( g(x) \): \[ g(x) = \frac{\sin x}{x - \sin x} \] To find the limit as \( x \to 0 \), we can rewrite \( x - \sin x \) using the Taylor series expansion for \( \sin x \): \[ \sin x \approx x - \frac{x^3}{6} + O(x^5) \] Thus: \[ x - \sin x \approx x - \left(x - \frac{x^3}{6}\right) = \frac{x^3}{6} \] Now substituting this back into \( g(x) \): \[ g(x) = \frac{\sin x}{\frac{x^3}{6}} \approx \frac{x}{\frac{x^3}{6}} = \frac{6}{x^2} \] As \( x \to 0 \), \( g(x) \to \infty \). ### Step 4: Apply the limit formula Now that we have both limits: - \( \lim_{x \to 0} f(x) = 1 \) - \( \lim_{x \to 0} g(x) = \infty \) We can use the limit property: \[ \lim_{x \to a} f(x)^{g(x)} = e^{\lim_{x \to a} (f(x) - 1) g(x)} \] ### Step 5: Calculate \( \lim_{x \to 0} (f(x) - 1) g(x) \) Now we need to calculate: \[ \lim_{x \to 0} \left( \frac{\sin x}{x} - 1 \right) g(x) \] We know: \[ f(x) - 1 = \frac{\sin x - x}{x} = -\frac{x^3/6 + O(x^5)}{x} = -\frac{x^2}{6} + O(x^3) \] So: \[ (f(x) - 1) g(x) = \left(-\frac{x^2}{6}\right) \left(\frac{6}{x^2}\right) = -1 \] Thus: \[ \lim_{x \to 0} (f(x) - 1) g(x) = -1 \] ### Step 6: Final limit calculation Now substituting back into the exponential limit: \[ \lim_{x \to 0} f(x)^{g(x)} = e^{-1} = \frac{1}{e} \] ### Conclusion Thus, the final result is: \[ \lim_{x \to 0} \left( \frac{\sin x}{x} \right)^{\left( \frac{\sin x}{x - \sin x} \right)} = \frac{1}{e} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|3 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise MATCHING TYPE QUESTIONS|1 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((a^(x)+b^(x)+c^(x))/3)^(2/x) is equal to

lim_(xto0)(((1+x)^(1//x))/e)^(1/(sinx)) is equal to

lim_(x->oo)[sinx/x]

lim_(x->oo) (sinx/x) =

Evaluate lim_(x to 0) ((sinx)/(x))^(((sinx)/(x-sinx))).

lim_(x->oo)sinx/x =

The value of lim_(xrarr0) ((sinx)/(x))^((sinx)/(x-sinx)) , is

lim_(xto0)((e^(x)-1)/x)^(1//x)

lim_(xrarr0) (x^(2)-x)/(sinx)