Home
Class 12
MATHS
If f(a)=2 f'(a)=1 g(a)=-1 g'(a)=2 the...

If `f(a)=2` ` f'(a)=1` ` g(a)=-1` `g'(a)=2` then `lim_(xtoa)(g(x)f(a)-g(a)f(x))/(x-a)` is

A

`-5`

B

`3`

C

`-3`

D

`5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given, we will use the properties of derivatives and apply L'Hôpital's Rule. Let's break down the solution step by step. ### Step-by-step Solution: 1. **Identify the limit expression:** We need to evaluate: \[ \lim_{x \to a} \frac{g(x)f(a) - g(a)f(x)}{x - a} \] 2. **Recognize the form of the limit:** As \( x \to a \), both the numerator and denominator approach 0, which gives us the indeterminate form \( \frac{0}{0} \). Therefore, we can apply L'Hôpital's Rule. 3. **Differentiate the numerator and denominator:** According to L'Hôpital's Rule, we differentiate the numerator and the denominator: \[ \text{Numerator: } \frac{d}{dx}[g(x)f(a) - g(a)f(x)] = g'(x)f(a) - g(a)f'(x) \] \[ \text{Denominator: } \frac{d}{dx}[x - a] = 1 \] 4. **Rewrite the limit using derivatives:** Now we can rewrite the limit as: \[ \lim_{x \to a} \left( g'(x)f(a) - g(a)f'(x) \right) \] 5. **Substitute \( x = a \):** Now we substitute \( x = a \) into the expression: \[ g'(a)f(a) - g(a)f'(a) \] 6. **Plug in the given values:** We have the following values from the problem: - \( f(a) = 2 \) - \( f'(a) = 1 \) - \( g(a) = -1 \) - \( g'(a) = 2 \) Substituting these values gives: \[ = g'(a)f(a) - g(a)f'(a) = 2 \cdot 2 - (-1) \cdot 1 \] \[ = 4 + 1 = 5 \] 7. **Final result:** Thus, the limit evaluates to: \[ \lim_{x \to a} \frac{g(x)f(a) - g(a)f(x)}{x - a} = 5 \] ### Summary of the Solution: The limit is equal to 5.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If f(a)=2,f^(prime)(a)=1,g(a)=-1,g^(prime)(a)=2, then the value of lim_(x->a)(g(x)f(a)-g(a)f(x))/(x-a) is (a) -5 (b) 1/5 (c) 5 (d) none of these

If f(1) =g(1)=2 , then lim_(xrarr1) (f(1)g(x)-f(x)g(1)-f(1)+g(1))/(f(x)-g(x)) is equal to

Knowledge Check

  • If f(x)=x^2+1 , and g(x)=x-2 , find x such that f(g(x))=g(f(x))

    A
    1
    B
    `3/2`
    C
    `1.5`
    D
    `2`
  • Similar Questions

    Explore conceptually related problems

    If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((a^(x)+b^(x)+c^(x))/3)^(2/x) is equal to

    If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

    If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to

    If lim_(x->a)(f(x)/(g(x))) exists, then

    If f (x) = cot ^(-1)((3x -x ^(3))/( 1- 3x ^(2)))and g (x) = cos ^(-1) ((1-x ^(2))/(1+x^(2))) then lim _(xtoa)(f(x) - f(a))/( g(x) -g (a)), 0 ltalt 1/2 is :

    Let f(a)=g(a)=k and their nth derivatives exist and be not equal for some n. If lim_(xtoa) (f(a)g(x)-f(a)-g(a)f(x)+g(a))/(g(x)-f(x))=4 then find the value of k.

    Let f(x+y) = f(x) f(y) and f(x) = 1 + x g(x) G(x) where lim_(x->0) g(x) =a and lim_(x->o) G(x) = b. Then f'(x) is