Home
Class 12
MATHS
Let f(x) = {{:(-2 sin x,"for",-pi le x l...

Let `f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):}`.
If `f` is continuous on `[-pi, pi)`, then find the values of `a` and `b`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the values of \( a \) and \( b \) such that the piecewise function \[ f(x) = \begin{cases} -2 \sin x & \text{for } -\pi \leq x \leq -\frac{\pi}{2} \\ a \sin x + b & \text{for } -\frac{\pi}{2} < x < \frac{\pi}{2} \\ \cos x & \text{for } \frac{\pi}{2} \leq x \leq \pi \end{cases} \] is continuous on the interval \([- \pi, \pi)\), we need to ensure continuity at the points \( x = -\frac{\pi}{2} \) and \( x = \frac{\pi}{2} \). ### Step 1: Continuity at \( x = -\frac{\pi}{2} \) To ensure continuity at \( x = -\frac{\pi}{2} \), we set the left-hand limit equal to the right-hand limit: \[ \lim_{x \to -\frac{\pi}{2}^-} f(x) = \lim_{x \to -\frac{\pi}{2}^+} f(x) \] Calculating the left-hand limit: \[ \lim_{x \to -\frac{\pi}{2}} (-2 \sin x) = -2 \sin\left(-\frac{\pi}{2}\right) = -2 \cdot (-1) = 2 \] Calculating the right-hand limit: \[ \lim_{x \to -\frac{\pi}{2}} (a \sin x + b) = a \sin\left(-\frac{\pi}{2}\right) + b = a \cdot (-1) + b = -a + b \] Setting these equal gives us our first equation: \[ 2 = -a + b \quad \text{(Equation 1)} \] ### Step 2: Continuity at \( x = \frac{\pi}{2} \) Next, we ensure continuity at \( x = \frac{\pi}{2} \): \[ \lim_{x \to \frac{\pi}{2}^-} f(x) = \lim_{x \to \frac{\pi}{2}^+} f(x) \] Calculating the left-hand limit: \[ \lim_{x \to \frac{\pi}{2}} (a \sin x + b) = a \sin\left(\frac{\pi}{2}\right) + b = a \cdot 1 + b = a + b \] Calculating the right-hand limit: \[ \lim_{x \to \frac{\pi}{2}} (\cos x) = \cos\left(\frac{\pi}{2}\right) = 0 \] Setting these equal gives us our second equation: \[ a + b = 0 \quad \text{(Equation 2)} \] ### Step 3: Solve the system of equations From Equation 2, we can express \( a \) in terms of \( b \): \[ a = -b \] Substituting this into Equation 1: \[ 2 = -(-b) + b \] \[ 2 = b + b \] \[ 2 = 2b \] \[ b = 1 \] Now substituting \( b = 1 \) back into Equation 2 to find \( a \): \[ a + 1 = 0 \implies a = -1 \] ### Conclusion The values of \( a \) and \( b \) are: \[ a = -1, \quad b = 1 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|7 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(3) f(x) dx , where f(x)={(cos2x",",0 le x le (pi)/(2)),(3",",(pi)/(2) le x le 3):}

If 0 le x le pi/2 then

If f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):} is continuous at x = (pi)/(2) , then find the relation between m and n.

f(x)= {:{(x+asqrt2 sin x ,, 0 le x lt pi/4),( 2x cot x +b , , pi/4 le x le pi/2), (a cos 2 x - b sin x , , pi/2 lt x le pi):} continuous function AA x in [ 0,pi] " then " 5(a/b)^(2) equals ....

Let f(x) ={{:( x+2, 0 le x lt 2),( 6-x, x ge 2):}, g(x) ={{:( 1+ tan x, 0le x lt (pi) /(4)),( 3-cotx,(pi)/(4) le x lt pi ):} f(g(x)) is

If f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):} is continuous at x = (pi)/(2) , then

If cos x + sin x = a , (- (pi)/(2) lt x lt - (pi)/(4)) , then cos 2 x is equal to

Let f(x)=min{1,cos x,1-sinx}, -pi le x le pi , Then, f(x) is

Let f(x) = {{:(x^(2) + 3x",", -1 le x lt 0),(-sin x",", 0 le x lt pi//2),(-1 - cos x",", (pi)/(2) le x le pi):} . Draw the graph of the function and find the following (a) Range of the function (b) Point of inflection (c) Point of local minima

f(x)={{:(((3)/(2))^((cot 3x)/(cot 2x)), 0 le xlt (pi)/(2)),(b+3, x =(pi)/(2)),( (1+|cotx|)^((a tan x|)/b), (pi)/(2) lt xlt pi):} is continuous at x= pi/2 , then